首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   0篇
地球物理   16篇
地质学   9篇
海洋学   28篇
自然地理   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2006年   4篇
  2005年   1篇
  2004年   7篇
  2003年   2篇
  1999年   1篇
  1996年   2篇
  1995年   1篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1980年   1篇
  1978年   1篇
  1972年   1篇
  1971年   2篇
排序方式: 共有54条查询结果,搜索用时 406 毫秒
31.
Bottom currents in Nankai Trough and Sagami Trough   总被引:1,自引:0,他引:1  
Mean flows and velocity fluctuations are described from direct measurements of bottom currents made at three stations across Nankai Trough and two stations in Sagami Trough from May 1982 to May 1984. Aanderaa current meters were moored 7 m above the bottom. The observed mean flows indicate a counter-clockwise circulation in Nankai Trough with current speeds of 0.9–2.1 cm sec–1. The mean flows were larger on the slopes than on the flat bottom of the trough. The mean flows observed in Sagami Trough show an inflow into Sagami Bay which is considered to be a part of the Oyashio undercurrent from the north that flows along the eastern coast of Honshu. Velocity fluctuations with periods greater than 100 hr were less energetic in the troughs than those at a station west of Hachijo-jima Island. A highly energetic fluctuation with a period of 66.7 hr was observed on the northern slope of Sagami Trough in the velocity component parallel to the trough axis. A maximum current speed of 49 cm sec–1 was observed in Sagami Trough.This study was sponsored by the Ministry of Education, Science and Culture, Japan.  相似文献   
32.
Year long measurements of bottom pressure were made at 2,036 m depth in Sagami Trough, at 2,538 m depth in Suruga Trough, and at 32 m depth in the south of Minami-Daitojima Island. Amplitudes and phase lags of the major constituents of tides were estimated by the response method, and they were compared with the observational results at several tide stations operated by the Japan Meteorological Agency. A comparison with Schwiderski's global models for the eight tidal constituents showed that the amplitudes were in good accordance to one another within 3 cm, and that the differences of phase lags were less than 15°. The largest portion of the variations of the bottom pressure was caused by the tides: the variance of the major eight constituents was more than 98.5% as large as the total variance. The measurements show that tidal waves can be recorded offshore with a sufficient accuracy by the quartz sensors. Drifts of indication of the pressure gauges were significant and they prevented detection of a long-term variation which might be caused by fluctuations of the ocean currents or by the eddies.  相似文献   
33.
To assess each of the two possible mechanisms responsible for the fortnightly modulation of semi-enclosed basin–ocean water exchange (‘density tides’), a set of numerical experiments is carried out using a vertically two-dimensional numerical model with realistic situations in Puget Sound in mind. It is found that, although the localized vertical viscosity (or the localized vertical diffusivity) enhanced in the entrance sill region primarily controls the bottom-water transport (or the bottom-water density) during spring tides, it does not lead to any appreciable variations of bottom-water density (or bottom-water transport). This indicates that the fortnightly modulation of vertical viscosity and that of vertical diffusivity both play important roles in creating density tides. In the real ocean, the vertical viscosity and diffusivity are enhanced simultaneously during spring tides, so that it is difficult to discriminate between both effects on density tides. This causes the widespread misunderstanding that density tides are mainly caused by the decreased advection of dense bottom-water from outside due to the enhanced vertical viscosity during spring tides.  相似文献   
34.
35.
The Hidaka Collision Zone (HCZ), central Hokkaido, Japan, is a good target for studies of crustal evolution and deformation processes associated with an arc–arc collision. The collision of the Kuril Arc (KA) with the Northeast Japan Arc (NJA), which started in the middle Miocene, is considered to be a controlling factor for the formation of the Hidaka Mountains, the westward obduction of middle/lower crustal rocks of the KA (the Hidaka Metamorphic Belt (HMB)) and the development of the foreland fold-and-thrust belt on the NJA side. The “Hokkaido Transect” project undertaken from 1998 to 2000 was a multidisciplinary effort intended to reveal structural heterogeneity across this collision zone by integrated geophysical/geological research including seismic refraction/reflection surveys and earthquake observations. An E–W trending 227 km-long refraction/wide-angle reflection profile found a complicated structural variation from the KA to the NJA across the HCZ. In the east of the HCZ, the hinterland region is covered with 4–4.5 km thick highly undulated Neogene sedimentary layers, beneath which two eastward dipping reflectors were imaged in a depth range of 10–25 km, probably representing the layer boundaries of the obducting middle/lower crust of the KA. The HMB crops out on the westward extension of these reflectors with relatively high Vp (>6.0 km/s) and Vp/Vs (>1.80) consistent with middle/lower crustal rocks. Beneath these reflectors, more flat and westward dipping reflector sequences are situated at the 25–27 km depth, forming a wedge-like geometry. This distribution pattern indicates that the KA crust has been delaminated into more than two segments under our profile. In the western part of the transect, the structure of the fold-and-thrust belt is characterized by a very thick (5–8 km) sedimentary package with a velocity of 2.5–4.8 km/s. This package exhibits one or two velocity reversals in Paleogene sedimentary layers, probably formed by imbrication associated with the collision process. From the horizontal distribution of these velocity reversals and other geophysical/geological data, the rate of crustal shortening in this area is estimated to be greater than 3–4 mm/year, which corresponds to 40–50% of the total convergence rate between the NJA and the Eurasian Plate. This means that the fold-and-thrust belt west of the HCZ is absorbing a large amount of crustal deformation associated with plate interaction across Hokkaido Island.  相似文献   
36.
Juichiro  Ashi Asahiko  Taira 《Island Arc》1992,1(1):104-115
Abstract The Nankai accretionary prism, off southwest Japan represents one of the best developed clastic prisms in the world. A combination of swath mapping including Sea Beam and 'IZANAGI' sidescan sonar and closely spaced seismic reflection data was used to investigate the relationship between the progressive landward change in surface morphology and the internal structural evolution of the prism. The prism surface is divided into three zones sub-parallel to the trough axis on the basis of the IZANAGI backscattering image. The frontal part of the prism is characterized by several continuous lineaments that are approximately perpendicular to the plate convergence direction. These lineaments correspond to anticlinal ridges caused by active imbricate thrusting. Landward, these anticlinal ridges become progressively masked by fine-grained hemipelagic slope sediments that are constantly supplied to the entire prism slope. However, these overlying sediments show little deformation. This implies a change in deformation style from frontal thrusting with fault-bend folds to internal refolding of thrust sheets. In the middle to upper prism slope, the IZANAGI image shows numerous landslide features and large fault scarps, suggesting that exposed sediments are lithified enough to fail in brittle mode compared with the wet sediment deformation at the prism toe. Prism evolution is strongly affected by the decollement depth which may be indirectly controlled by oceanic basement relief; a topographic embayment coincides with a regional minimum of sediment offscraping where a basement high has been subducted. The small tapered prism observed in the embayment may be due to lateral supply of overpressured pore fluids from the adjacent prism. Strain caused by the differential rate of prism growth across the basement relief forms faults trending at high angles to the trough axis.  相似文献   
37.
Seabeam mapping and detailed geophysical surveying have been conducted over the Nankai Trough where the fossil Shikoku Ridge is subducted below southwest Japan. The geometry of the oceanic lithosphere bending under the margin as well as the three-dimensional structure of the accretionary prism have thus been determined in detail. Three 350° trending, probably transform faults have been identified in the area of the survey. They do not extend further south and appear to be limited to the last phase of spreading within the Shikoku Basin, probably between 15 and 12 Ma; this last phase of spreading would then have been accompanied by a sharp change in spreading direction from east-west to N 350°. The two eastern transform faults limit a zone of reduced Nankai trench fill of turbidites opposite to the Tosa Bae Embayment. This observation suggests that the Tosa Bae Embayment actually results from this reduced supply of trench fill to the imbricate thrusting process. The accretionary prism can be divided into three different tectonic provinces separated by continuous mappable thrusts, the Lower and Upper Main Thrusts. Surface shortening is limited to the lower accretionary prism south of the Upper Main Thrust (UMT) whereas uplift with possible extension characterizes the prism above the UMT. Deformation, due to the relative plate motion, mostly affects the lower accretionary prism south of the UMT.  相似文献   
38.
Radii and angular velocities in the motions of drifting buoys deployed in the Kuroshio are estimated by fitting circles to the trajectories of two drifting buoys, one with a drogue at 300 m depth and the other at 800 m depth. The buoys were deployed in the Kuroshio where it was flowing counter-clockwise around the large cold water mass south of Honshu. The same technique was applied to two drifting buoys with drogues at 300 m depth placed in the Kuroshio where it flowed clockwise around Oshima Island in Sagami Bay. The centrifugal forces were 7% and 6% as large as the Coriolis forces in the Kuroshio around the cold water mass, and they were –56% and –42% as large as the Coriolis forces in the current around the Oshima Island. The temperature gradient observed in the Oshima-West Channel suggested that the pressure gradient there was smaller due to the centrifugal force acting against the Coriolis force than the pressure gradient to be balanced with the Coriolis force.  相似文献   
39.
A surface buoy was moored from 20 April to 2 November 1988 at 28°48 N and 135°01 E where the water depth was 4900 m to measure temperature and velocity in the upper 150 m. The Typhoon 8824 passed at 0300 (JST) on 8 October about 50 km north to the mooring station with a maximum wind speed of 43.5 m s–1. The buoy was shifted about 30 km to southwest, and the instruments were damaged. The records of temperature at 0.5 m and velocity at 50 m were obtained. The inertial oscillation caused by the typhoon is described using the current record. The oscillation endured for about 20 days. Deep mixing and vertical, heart transport by the typhoon are discussed based on the data from the Ocean Data Buoy of the Japan Meteorological Agency moored at 29°N and 135°E.  相似文献   
40.
A newly developed three-dimensional Doppler current meter is described and the results of preliminary field experiments are presented where simultaneous measurements of surface elevation and water velocity associated with wave orbital motion were made. The phase difference between the surface elevation and the vertical velocity measured at 1.0 and 0.45 meters below the mean water level is found to be approximately 90, in accord with the theory for surface waves of infinitesimally small amplitudes. The spectral (frequency) density distribution for velocity is also found to agree with that we would expect from the linear theory for the observed frequency distribution of surface elevation. However, the amplitude of velocity is consistently smaller (about 10 %) than that we would expect. This reduction of amplitude is more pronounced in cases where waves are high and the water depth is shallow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号