首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   9篇
  国内免费   1篇
测绘学   1篇
地球物理   27篇
地质学   24篇
  2023年   1篇
  2022年   3篇
  2020年   4篇
  2019年   3篇
  2018年   6篇
  2017年   8篇
  2016年   7篇
  2015年   1篇
  2014年   7篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2007年   2篇
排序方式: 共有52条查询结果,搜索用时 0 毫秒
51.
This paper presents the development of a seismological model for the Tehran area. This modelling approach, which was originally developed in Eastern North America, has been used successfully in other parts of the world including Australia and China for simulating accelerograms and elastic response spectra. Parameters required for input into the model were inferred from seismological and geological information obtained locally. The attenuation properties of the earth crust were derived from the analysis of accelerogram records that had been collated from within the region in a previous study. In modelling local modifications of seismic waves in the upper crust, shear-wave velocity profiles have been constructed in accordance with the power law. Information inferred from micro-zonation studies (for near-surface conditions) and from measurements of teleseismic P-waves reflected from the deeper crusts as reported in the literature has been used to constrain parameters in the power-law relationships. This method of obtaining amplification factors for the upper crust distinguishes this study from earlier studies in the Tehran area (in which site amplification factors were inferred from the H/V ratio of the recorded ground motions). The regional specific seismological model so constructed from the study enabled accelerograms to be simulated and elastic response spectra calculated for a series of magnitude–distance combinations. Importantly, elastic response spectra calculated from the simulated accelerograms have been compared with those calculated from accelerograms recorded from earthquakes with magnitudes ranging between M6.3 and M7.4. The peak ground velocity values calculated from the simulated accelerograms have also been correlated with values inferred from macro-seismic intensity data of 17 historical earthquakes with magnitudes varying between 5.4 and 7.7 and with distances varying between 40 and 230 km. This paper forms part of the long-term strategy of the authors of applying modern techniques for modelling the attenuation behaviour of earthquakes in countries which are lacking in instrumental data of earthquakes.  相似文献   
52.
Bordbar  Mojgan  Neshat  Aminreza  Javadi  Saman  Pradhan  Biswajeet  Dixon  Barnali  Paryani  Sina 《Natural Hazards》2022,110(3):1799-1820

The main objective of this study is to integrate adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM) and artificial neural network (ANN) to design an integrated supervised committee machine artificial intelligence (SCMAI) model to spatially predict the groundwater vulnerability to seawater intrusion in Gharesoo-Gorgan Rood coastal aquifer placed in the northern part of Iran. Six hydrological GALDIT parameters (i.e., G groundwater occurrence, A aquifer hydraulic conductivity, L level of groundwater above sea level, D distance from the shore, I impact of the existing status of seawater intrusion in the region, and T thickness of the aquifer) were considered as inputs for each model. In the training step, the values of GALDIT’s vulnerability index were conditioned by using the values of TDS concentration in order to obtain the conditioned vulnerability index (CVI). The CVI was considered as the target for each model. After training the models, each model was tested using a separate TDS dataset. The results indicated that the ANN and ANFIS algorithms performed better than the SVM algorithm. The values of correlation were obtained as 88, 87, and 80% for ANN, ANFIS, and SVM models, respectively. In the testing step of the SCMAI model, the values of RMSE, R2, and r were obtained as 6.4, 0.95, and 97%, respectively. Overall, SCMAI model outperformed other models to spatially predicting vulnerable zones. The result of the SCMAI model confirmed that the western zones along the shoreline had the highest vulnerability to seawater intrusion; therefore, it seems critical to consider emergency protection plans for study area.

Graphic abstract
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号