首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   4篇
  国内免费   2篇
测绘学   5篇
大气科学   14篇
地球物理   75篇
地质学   106篇
海洋学   28篇
天文学   21篇
自然地理   30篇
  2021年   2篇
  2020年   5篇
  2019年   4篇
  2018年   2篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   7篇
  2013年   6篇
  2012年   8篇
  2011年   12篇
  2010年   13篇
  2009年   17篇
  2008年   12篇
  2007年   10篇
  2006年   11篇
  2005年   12篇
  2004年   18篇
  2003年   11篇
  2002年   10篇
  2001年   11篇
  2000年   4篇
  1999年   5篇
  1998年   8篇
  1997年   6篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   6篇
  1985年   4篇
  1984年   2篇
  1983年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   1篇
  1971年   1篇
  1968年   1篇
  1965年   1篇
  1961年   1篇
排序方式: 共有279条查询结果,搜索用时 15 毫秒
271.
Three collisional cycles, the Tanzawa, Izu and Shichito, are known to have occurred in the South Fossa Magna, central Japan, since the late Miocene, based on geologic evidence. The cycles consist of six stages. At present the South Fossa Magna is in the later part of stage 5 of the Izu Cycle and stage 2 of the Shichito Cycle. Because the collisional processes are ongoing we can observe, measure and correlate them with the geologic records of the former cycles. The collisional processes are progressing intermittently because of the rupture and deformation of the collided and colliding island arc crusts. Rupture in the subducting crust can be explained by the geometry of the subducting plate along a boundary that is not straight. The delamination of the upper crust is detected from the geologic and crustal structure in the collided Tanzawa Block; it is an important factor in the deformation of the crust.  相似文献   
272.
The fall-rate of the T-5 expendable bathythermograph (XBT) produced by Tsurumi Seiki (TSK) Co., Ltd and that by Sippican Inc., are intercompared by a series of contemporaneous and colocated measurements with conductivity-temperature-depth (CTD) profilers. It is confirmed that the fall-rates of the two manufacturers' T-5 differ by about 5 percent, despite the fact that they had been believed to be identical for many years. The cause of the difference is discussed on the basis of a detailed cross-examination of the two T-5 models. It is found for the first time that the two models are different in several respects. The manufacturer's fall-rate equation is only applicable to the Sippican T-5, for which Boyd and Linzell's (1993) equation seems to be slightly more accurate. Kizu et al.'s (2005) equation gives a clearly less biased depth than the manufacturers' equation for the TSK T-5. It is also found that the fall-rates of both T-5 models are dependent on water temperature, perhaps because of viscosity. The temperature-dependency of the fall-rate of the TSK T-5 is larger than that of the Sippican T-5.  相似文献   
273.
Whilst faulting in the shallow crust is inevitably associated with comminution of rocks, the mechanical properties of the comminuted granular materials themselves affect the slip behavior of faults. Therefore, the mechanical behavior of any fault progresses along an evolutionary path. We analyzed granular fault rocks from four faults, and deduced an evolutionary trend of fractal size frequency. Comminution of fault rocks starts at a fractal dimension close to 1.5 (2-D measurement), at which a given grain is supported by the maximum number of grains attainable and hence is at its strongest. As comminution proceeds, the fractal dimension increases, and hence comminution itself is a slip weakening mechanism. Under the appropriate conditions, comminuted granular materials may be fluidized during seismic slip events. In this paper, we develop a new method to identify the granular fault rocks that have experienced fluidization, where the detection probability of fragmented counterparts is a key parameter. This method was applied to four fault rock samples and a successful result was obtained. Knowledge from powder technology teaches us that the volume fraction of grains normalized by maximum volume fraction attainable is the most important parameter for dynamic properties of granular materials, and once granular fault materials are fluidized, the fault plane becomes nearly frictionless. A small decrease in the normalized volume fraction of grains from 1 is a necessary condition for the phase transition to fluidization from the deformation mechanism governed by grain friction and crushing by contact stresses. This condition can be realized only when shearing proceeds under unconstrained conditions, and this demands that the gap between fault walls is widened. Normal interface vibration proposed by Brune et al. [Tectonophysics 218 (1993) 59] appears to be the most appropriate cause of this, and we presented two lines of field evidence that support this mechanism to work in nature.  相似文献   
274.
We have investigated the chemical forms, reactivities and transformation kinetics of Fe(III) species present in coastal water with ion exchange and filtration methods. To simulate coastal water system, a mixture of ferric iron and fulvic acid was added to filtered seawater and incubated for a minute to a week. At each incubation time, the seawater sample was acidified with hydrochloric acid and then applied to anion exchange resin (AER) to separate negatively charged species (such as fulvic acid, its complexes with iron and iron oxyhydroxide coated with fulvic acid) from positively charged inorganic ferric iron (Fe(III)′). By monitoring the acid-induced Fe(III)′ over an hour, it was found that iron complexed by fulvic acid dissociated rapidly to a large extent (86–92% at pH 2), whereas amorphous ferric oxyhydroxide particles associated with fulvic acid (AFO-L) dissociated very slowly with the first-order dissociation rate constants ranging from 6.1 × 10− 5 for pH 3 to 2.7 × 10− 4 s− 1 for pH 2. Therefore, a brief acidification followed by the AER treatment (acidification/AER method) was likely to be able to determine fulvic acid complexes and thus differentiate the complexes from the AFO-L particles (the dissolution of AFO-L was insignificant during the brief acidification). The acidification/AER method coupled with a simple filtration technique suggested that the iron–fulvic acid complexes exist in both the < 0.02 μm and 0.02–0.45 μm size fractions in our coastal water system. The truly dissolved iron (< 0.02 μm) was relatively long-lived with a life-time of 14 days, probably due to the complexation by strong ligands. Such an acid-labile iron may be an important source of bioavailable iron in coastal environments, as a significant relationship between the chemical lability and bioavailability of iron has been well recognised.  相似文献   
275.
We have established analytical procedures for quantitative rare earth element (REE) measurements by NanoSIMS 50L ion microprobe with 2–10 μm spatial resolution. Measurements are performed by multidetection using energy filtering under several static magnetic field settings. Relative sensitivity factors and REE oxide/REE element secondary ion ratios that we determined for the NanoSIMS match values previously determined for other ion microprobes. REE measurements of 100 ppm REE glass standards yielded reproducibility and accuracy of 0.5–2.5% and 5–15%, respectively. REE measurements of minerals of an Allende type‐A CAI, 7R19‐1, were performed using three different methods: spot analysis, line profile, and imaging. These data are in excellent agreement with previous REE measurements of this inclusion by IMS‐3f ion microprobe. The higher spatial resolution NanoSIMS measurements provide additional insight into the formation process of this CAI and offer a promising new tool for analysis of fine‐grained and complexly zoned materials.  相似文献   
276.
277.
278.
In eastern Heilongjiang, the Upper Jurassic is marine and restricted to the Suibin and Dong’an areas, where it is characterized faunally by Callovian–Volgian (Tithonian) bivalves and florally by dinoflagellates. The Lower Cretaceous is widely distributed in eastern Heilongjiang, and characterized faunally by Berriasian–Valanginian bivalves, Barremian–Albian ammonites and Aucellina, and florally by dinoflagellates. To the west, the marine facies grade into non-marine beds. Thus, in the east, for example in the Dong’an and Dajiashan areas, near the northwestern Palaeo-Pacific, the Lower Cretaceous is marine; westward, in the Yunshan, Longzhaogou, Peide, and Zhushan areas, marine and non-marine deposits alternate, whereas further west still, e.g. in the Jixi Basin, non-marine facies are intercalated with marine beds. This regional distribution is indicative of a large, shallow embayment opening eastwards to the Palaeo-Pacific; during the Early Cretaceous successive transgressive-regressive events influenced the climate and biota of eastern Heilongjiang and northeastern China. Many of the Lower Cretaceous sections contain abundant coals, demonstrating that in this region the Early Cretaceous was an important coal-forming period. Some non-marine bivalve species are common to the Lower Cretaceous Jixi Group of eastern Heilongjiang, the Jehol Group of western Liaoning and the Transbaikalian Group of Siberia, suggesting that these groups are of comparable Early Cretaceous age.  相似文献   
279.
Although we know that rainfall interception (the rain caught, stored, and evaporated from aboveground vegetative surfaces and ground litter) is affected by rain and throughfall drop size, what was unknown until now is the relative proportion of each throughfall type (free throughfall, splash throughfall, canopy drip) beneath coniferous and broadleaved trees. Based on a multinational data set of >120 million throughfall drops, we found that the type, number, and volume of throughfall drops are different between coniferous and broadleaved tree species, leaf states, and timing within rain events. Compared with leafed broadleaved trees, conifers had a lower percentage of canopy drip (51% vs. 69% with respect to total throughfall volume) and slightly smaller diameter splash throughfall and canopy drip. Canopy drip from leafless broadleaved trees consisted of fewer and smaller diameter drops (D50_DR, 50th cumulative drop volume percentile for canopy drip, of 2.24 mm) than leafed broadleaved trees (D50_DR of 4.32 mm). Canopy drip was much larger in diameter under woody drip points (D50_DR of 5.92 mm) than leafed broadleaved trees. Based on throughfall volume, the percentage of canopy drip was significantly different between conifers, leafed broadleaved trees, leafless broadleaved trees, and woody surface drip points (p ranged from <0.001 to 0.005). These findings are partly attributable to differences in canopy structure and plant surface characteristics between plant functional types and canopy state (leaf, leafless), among other factors. Hence, our results demonstrating the importance of drop‐size‐dependent partitioning between coniferous and broadleaved tree species could be useful to those requiring more detailed information on throughfall fluxes to the forest floor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号