全文获取类型
收费全文 | 90篇 |
免费 | 10篇 |
专业分类
大气科学 | 22篇 |
地球物理 | 22篇 |
地质学 | 12篇 |
海洋学 | 2篇 |
天文学 | 39篇 |
自然地理 | 3篇 |
出版年
2023年 | 2篇 |
2021年 | 5篇 |
2020年 | 2篇 |
2019年 | 2篇 |
2018年 | 3篇 |
2017年 | 6篇 |
2016年 | 5篇 |
2015年 | 4篇 |
2014年 | 7篇 |
2013年 | 7篇 |
2012年 | 2篇 |
2011年 | 7篇 |
2010年 | 6篇 |
2009年 | 6篇 |
2008年 | 5篇 |
2007年 | 3篇 |
2006年 | 4篇 |
2005年 | 2篇 |
2004年 | 6篇 |
2002年 | 1篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 5篇 |
1992年 | 1篇 |
1983年 | 1篇 |
排序方式: 共有100条查询结果,搜索用时 31 毫秒
41.
We present a short history of the TAUVEX instrument, conceived to provide multi-band wide-field imaging in the ultraviolet,
emphasizing the lack of sufficient and aggressive support on the part of the different space agencies that dealt with this
basic science mission. First conceived in 1985 and selected by the Israel Space Agency in 1989 as its first priority payload,
TAUVEX is fast becoming one of the longest-living space project of space astronomy. After being denied a launch on a national
Israeli satellite, and then not flying on the Spectrum X-Gamma (SRG) international observatory, it was manifested since 2003
as part of ISRO’s GSAT-4 Indian satellite to be launched in the late 2000s. However, two months before the launch, in February
2010, it was dismounted from its agreed-upon platform. This proved to be beneficial, since GSAT-4 and its launcher were lost
on April 15 2010 due to the failure of the carrier rocket’s 3rd stage. TAUVEX is now stored in ISRO’s clean room in Bangalore
with no firm indications when or on what platform it might be launched. 相似文献
42.
AbstractWe evaluate flood magnitude and frequency trends across the Mid-Atlantic USA at stream gauges selected for long record lengths and climate sensitivity, and find field significant increases. Fifty-three of 75 study gauges show upward trends in annual flood magnitude, with 12 showing increases at p < 0.05. We investigate trends in flood frequency using partial duration series data and document upward trends at 75% of gauges, with 27% increasing at p < 0.05. Many study gauges show evidence for step increases in flood magnitude and/or frequency around 1970. Expanding our study area to include New England, we find evidence for lagged positive relationships between the winter North Atlantic Oscillation phase and flood magnitude and frequency. Our results suggest hydroclimatic changes in regional flood response that are related to a combination of factors, including cyclic atmospheric variability and secular trends related to climate warming affecting both antecedent conditions and event-scale processes.Editor Z.W. Kundzewicz; Associate editor H. Lins 相似文献
43.
U‐Pb Geochronological and Thermochronological Time–Temperature Constraints of 40Ar/39Ar Hornblende Reference Material HB3gr 下载免费PDF全文
Terrence Blackburn Noah McLean Samuel A. Bowring 《Geostandards and Geoanalytical Research》2017,41(3):325-334
Hornblende from the Lone Grove Pluton, Llano Uplift, Texas, has served as an irradiation reference material in 40Ar/39Ar studies for decades. In order to evaluate the apparent age bias that currently exists between the U‐Pb and 40Ar/39Ar systems, zircon and titanite were dated by isotope dilution‐thermal ionisation mass spectrometry (ID‐TIMS) from the same rock from which the hornblende 40Ar/39Ar reference material HB3gr is derived. Zircon U‐Pb data indicate initial crystallisation at 1090.10 ± 0.16 Ma (2s), a date that is 1.7% older than the accepted K‐Ar date (1072 ± 14 Ma, 2s) for HB3gr; an offset that exceeds the typical 0.5–1% bias between the two systems, though remaining within uncertainty due to the large uncertainties in the 40K decay constant. Zircon data are presented using both EARTHTIME tracers ET535 and ET2535 and are statistically indistinguishable. Single grain titanite analyses range between 1082 ± 0.75 and 1086 ± 0.81 Ma (2s) and are interpreted to record the subsequent cooling following crystallisation at rates between 30 and 50 °C Ma?1. This is supported by the observation that hornblende 40Ar/39Ar dates corrected for decay constant bias are resolvably younger than the zircon U‐Pb date and in good agreement with titanite U‐Pb dates, permitting the conclusion that both titanite U‐Pb and hornblende 40Ar/39Ar systems provide a record of cooling. 相似文献
44.
Herbert W. Schnopper Eric Silver Stephen Murray Suzanne Romaine Simon Bandler Christine Jones William Forman Norman Madden Jeffery Beeman Eugene Haller Finn Christensen Niels Westergaard Juan Fabregat Victor Reglero Alvaro Gimenez Noah Brosch Elia Liebowitz Hagai Netzer Marco Barbera Alfonso Collura Salvatore Sciortino 《Astrophysics and Space Science》2001,276(1):49-65
The X-Ray Spectroscopic Explorer (XRASE) has a unique combination of features that will make it possible to address many of NASA's scientific goals. These include how galaxy clusters form, the physics and chemistry of the ISM, the heating of stellar coronae, the amount and content of intergalactic baryonic matter, the mass of black holes and the formation of disks and jets in AGN and galactic binaries. XRASE has a thin foil, multilayered telescope with a large collecting area up to 10 keV, especially in the Fe K region (1100 cm2). Its microcalorimeter array combines high energy resolution (7 eV at 6 keV) and efficiency with a field-of-view of 26 arcmin2 . A deep orbit allows for long, continuous observations. Monitoring instruments in the optical (WOM-X), UV (TAUVEX) and hard X-RAY (GRAM) bands will offer exceptional opportunities to make simultaneous multi-wavelength observations. 相似文献
45.
Mathias J. Collins Noah P. Snyder Graham Boardman William S.L. Banks Mary Andrews Matthew E. Baker Maricate Conlon Allen Gellis Serena McClain Andrew Miller Peter Wilcock 《地球表面变化过程与地形》2017,42(11):1636-1651
Dam removals with unmanaged sediment releases are good opportunities to learn about channel response to abruptly increased bed material supply. Understanding these events is important because they affect aquatic habitats and human uses of floodplains. A longstanding paradigm in geomorphology holds that response rates to landscape disturbance exponentially decay through time. However, a previous study of the Merrimack Village Dam (MVD) removal on the Souhegan River in New Hampshire, USA, showed that an exponential function poorly described the early geomorphic response. Erosion of impounded sediments there was two‐phased. We had an opportunity to quantitatively test the two‐phase response model proposed for MVD by extending the record there and comparing it with data from the Simkins Dam removal on the Patapsco River in Maryland, USA. The watershed sizes are the same order of magnitude (102 km2), and at both sites low‐head dams were removed (~3–4 m) and ~65 000 m3 of sand‐sized sediments were discharged to low‐gradient reaches. Analyzing four years of repeat morphometry and sediment surveys at the Simkins site, as well as continuous discharge and turbidity data, we observed the two‐phase erosion response described for MVD. In the early phase, approximately 50% of the impounded sediment at Simkins was eroded rapidly during modest flows. After incision to base level and widening, a second phase began when further erosion depended on floods large enough to go over bank and access impounded sediments more distant from the newly‐formed channel. Fitting functional forms to the data for both sites, we found that two‐phase exponential models with changing decay constants fit the erosion data better than single‐phase models. Valley width influences the two‐phase erosion responses upstream, but downstream responses appear more closely related to local gradient, sediment re‐supply from the upstream impoundments, and base flows. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
46.
How does DEM resolution affect microtopographic characteristics,hydrologic connectivity,and modelling of hydrologic processes? 总被引:1,自引:0,他引:1 下载免费PDF全文
The resolution of a digital elevation model (DEM) is a crucial factor in watershed hydrologic and environmental modelling. DEM resolution can cause significant variability in the representation of surface topography, which further affects quantification of hydrologic connectivity and simulation of hydrologic processes. The objective of this study is to examine the effects of DEM resolution on (1) surface microtopographic characteristics, (2) hydrologic connectivity, and (3) the spatial and temporal variations of hydrologic processes. A puddle‐to‐puddle modelling system was utilized for surface delineation and modelling of the puddle‐to‐puddle overland flow dynamics, surface runoff, infiltration, and unsaturated flow for nine DEM resolution scenarios of a field plot surface. Comparisons of the nine modelling scenarios demonstrated that coarser DEM resolutions tended to eliminate topographic features, reduce surface depression storage, and strengthen hydrologic connectivity and surface runoff. We found that reduction in maximum depression storage and maximum ponding area was as high as 97.56% and 76.36%, respectively, as the DEM grid size increased from 2 to 80 cm. The paired t‐test and fractal analysis demonstrated the existence of a threshold DEM resolution (10 cm for the field plot), within which the DEM‐based hydrologic modelling was effective and acceptable. The effects of DEM resolution were further evaluated for a larger surface in the Prairie Pothole Region subjected to observed rainfall events. It was found that simulations based on coarser resolution DEMs (>10 m) tended to overestimate ponded areas and underestimate runoff discharge peaks. The simulated peak discharge from the Prairie Pothole Region surface reduced by approximately 50% as the DEM resolution changed from 2 to 90 m. Fractal analysis results elucidated scale dependency of hydrologic and topographic processes. In particular, scale analysis highlighted a unique constant–threshold–power relationship between DEM scale and topographic and hydrologic parameters/variables. Not only does this finding allow one to identify threshold DEM but also further develop functional relationships for scaling to achieve valid topographic characterization as well as effective and efficient hydrologic modelling. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
47.
Native Nothofagus forests in the midlatitude region of the Andes Cordillera are notorious biodiversity hot spots, uniquely situated in the Southern Hemisphere such that they develop in snow‐dominated reaches of this mountain range. Spanning a smaller surface area than similar ecosystems, where forests and snow coexist in the Northern Hemisphere, the interaction between vegetation and snow processes in this ecotone has received lesser attention. We present the first systematic study of snow–vegetation interactions in the Nothofagus forests of the Southern Andes, focusing on how the interplay between interception and climate determines patterns of snow water equivalent (SWE) variability. The Valle Hermoso experimental catchment, located in the Nevados de Chillán vicinity, was fitted with eight snow depth sensors that provided continuous measurements at varying elevations, aspect, and forest cover. Also, manual measurements of snow properties were obtained during snow surveys conducted during end of winter and spring seasons for 3 years, between 2015 and 2017. Each year was characterized by distinct climatological conditions, with 2016 representing one of the driest winters on record in this region. Distance to canopy, leaf area index, and total gap area were measured at each observational site. A regression model was built on the basis of statistical analysis of local parameters to model snow interception in this kind of forest. We find that interception implied a 23.2% reduction in snow accumulation in forested sites compared with clearings. The interception in these deciduous trees represents, on average, 23.6% of total annual snowfall, reaching a maximum measured interception value of 13.8‐mm SWE for all snowfall events analysed in this research. 相似文献
48.
Understanding how land cover change will impact water resources in snow-dominated regions is of critical importance as these locations produce disproportionate runoff relative to their land area. We coupled a land cover evolution model with a spatially explicit, physics-based, watershed process model to simulate land cover change and its impact on the water balance in a 5.0 km2 headwater catchment spanning the alpine–subalpine transition on the Colorado Front Range. We simulated two potential futures both with greater air temperature (+4°C/century) and more precipitation (+15%/century, MP) or less precipitation (−15%/century, LP) from 2000 to 2100. Forest cover in the catchment increased from 72% in 2000 to 84% and 83% in 2050 and to 95% and 92% in 2100 for MP and LP, respectively. Surprisingly, increases in forest cover led to mean increases in annual streamflow production of 12 mm (6%) and 2 mm (1%) for MP and LP in 2050 with an annual control streamflow of 208 mm. In 2100, mean streamflow production increased by 91 mm (44%) and 61 mm (29%) for MP and LP. This result counters previous work as runoff production increased with forested area due to decreases in snow wind-scour and increases in drifting leeward of vegetation, highlighting the need to better understand the impacts of forest expansion on the spatial pattern of snow scour, deposition and catchment effective precipitation. Identifying the hydrologic response of mountainous areas to climate warming induced land cover change is critically important due to the potential water resources impacts on downstream regions. 相似文献
49.
Daniel J. Condon Noah McLean Samuel A. Bowring 《Geochimica et cosmochimica acta》2010,74(24):7127-7143
We have determined 238U/235U ratios for a suite of commonly used natural (CRM 112a, SRM 950a, and HU-1) and synthetic (IRMM 184 and CRM U500) uranium reference materials by thermal ionisation mass-spectrometry (TIMS) using the IRMM 3636 233U-236U double spike to accurately correct for mass fractionation. Total uncertainty on the 238U/235U determinations is estimated to be <0.02% (2σ). These natural 238U/235U values are different from the widely used ‘consensus’ value (137.88), with each standard having lower 238U/235U values by up to 0.08%. The 238U/235U ratio determined for CRM U500 and IRMM 184 are within error of their certified values; however, the total uncertainty for CRM U500 is substantially reduced (from 0.1% to 0.02%). These reference materials are commonly used to assess mass-spectrometer performance and accuracy, calibrate isotope tracers employed in U, U-Th and U-Pb isotopic studies, and as a reference for terrestrial and meteoritic 238U/235U variations. These new 238U/235U values will thus provide greater accuracy and reduced uncertainty for a wide variety of isotopic determinations. 相似文献
50.