首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25273篇
  免费   212篇
  国内免费   928篇
测绘学   1438篇
大气科学   2027篇
地球物理   4681篇
地质学   11837篇
海洋学   1077篇
天文学   1783篇
综合类   2166篇
自然地理   1404篇
  2023年   11篇
  2022年   9篇
  2021年   10篇
  2020年   23篇
  2019年   27篇
  2018年   4773篇
  2017年   4048篇
  2016年   2601篇
  2015年   255篇
  2014年   113篇
  2013年   71篇
  2012年   1010篇
  2011年   2753篇
  2010年   2061篇
  2009年   2336篇
  2008年   1921篇
  2007年   2396篇
  2006年   86篇
  2005年   220篇
  2004年   438篇
  2003年   439篇
  2002年   293篇
  2001年   73篇
  2000年   71篇
  1999年   31篇
  1998年   42篇
  1997年   12篇
  1996年   12篇
  1995年   16篇
  1994年   8篇
  1993年   10篇
  1992年   11篇
  1991年   17篇
  1990年   11篇
  1989年   6篇
  1988年   9篇
  1987年   9篇
  1986年   10篇
  1985年   12篇
  1984年   12篇
  1983年   10篇
  1982年   11篇
  1981年   31篇
  1980年   26篇
  1979年   6篇
  1978年   9篇
  1977年   10篇
  1976年   10篇
  1975年   6篇
  1974年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We summarize the ASCA observations of the two Galactic superluminal sources GRO J1655–40 and GRS 1915+105, focusing on theabsorption line features.The high spectroscopic capability of ASCA enabled us to detectiron-K absorption line features from both objects. This is direct evidence for the presence of highly ionized plasma in a non-spherical configuration around a black hole, and is considered to be a unique signature of superluminal jet systems. The candidate of the line-absorber would be a part of an accretion disk at a distance of 109-11 cm from the central X-ray source.  相似文献   
992.
We present first results from a monitoring campaign of GRS 1915+105 undertaken with the USA X-ray timing experiment on the ARGOS satellite. A variety of behaviour has been observed, ranging from low, steady X-ray emission to rapid quasi-periodic flaring on timescales of approximately 10–120 seconds.  相似文献   
993.
A mechanism of damped oscillations of a coronal loop is investigated. The loop is treated as a thin toroidal flux rope with two stationary photospheric footpoints, carrying both toroidal and poloidal currents. The forces and the flux-rope dynamics are described within the framework of ideal magnetohydrodynamics (MHD). The main features of the theory are the following: i) Oscillatory motions are determined by the Lorentz force that acts on curved current-carrying plasma structures and ii) damping is caused by drag that provides the momentum coupling between the flux rope and the ambient coronal plasma. The oscillation is restricted to the vertical plane of the flux rope. The initial equilibrium flux rope is set into oscillation by a pulse of upflow of the ambient plasma. The theory is applied to two events of oscillating loops observed by the Transition Region and Coronal Explorer (TRACE). It is shown that the Lorentz force and drag with a reasonable value of the coupling coefficient (c d ) and without anomalous dissipation are able to accurately account for the observed damped oscillations. The analysis shows that the variations in the observed intensity can be explained by the minor radial expansion and contraction. For the two events, the values of the drag coefficient consistent with the observed damping times are in the range c d ≈2 – 5, with specific values being dependent on parameters such as the loop density, ambient magnetic field, and the loop geometry. This range is consistent with a previous MHD simulation study and with values used to reproduce the observed trajectories of coronal mass ejections (CMEs).  相似文献   
994.
This paper studies the relative motion of satellite formation flying in arbitrary elliptical orbits with no perturbation. The trajectories of the leader and follower satellites are projected onto the celestial sphere. These two projections and celestial equator intersect each other to form a spherical triangle, in which the vertex angles and arc-distances are used to describe the relative motion equations. This method is entitled the reference orbital element approach. Here the dimensionless distance is defined as the ratio of the maximal distance between the leader and follower satellites to the semi-major axis of the leader satellite. In close formations, this dimensionless distance, as well as some vertex angles and arc-distances of this spherical triangle, and the orbital element differences are small quantities. A series of order-of-magnitude analyses about these quantities are conducted. Consequently, the relative motion equations are approximated by expansions truncated to the second order, i.e. square of the dimensionless distance. In order to study the problem of periodicity of relative motion, the semi-major axis of the follower is expanded as Taylor series around that of the leader, by regarding relative position and velocity as small quantities. Using this expansion, it is proved that the periodicity condition derived from Lawden’s equations is equivalent to the condition that the Taylor series of order one is zero. The first-order relative motion equations, simplified from the second-order ones, possess the same forms as the periodic solutions of Lawden’s equations. It is presented that the latter are further first-order approximations to the former; and moreover, compared with the latter more suitable to research spacecraft rendezvous and docking, the former are more suitable to research relative orbit configurations. The first-order relative motion equations are expanded as trigonometric series with eccentric anomaly as the angle variable. Except the terms of order one, the trigonometric series’ amplitudes are geometric series, and corresponding phases are constant both in the radial and in-track directions. When the trajectory of the in-plane relative motion is similar to an ellipse, a method to seek this ellipse is presented. The advantage of this method is shown by an example.  相似文献   
995.
We present a simple method of forecasting the geomagnetic storms caused by high-speed streams (HSSs) in the solar wind. The method is based on the empirical correlation between the coronal hole area/position and the value of the Dst index, which is established in a period of low interplanetary coronal mass ejection (ICME) activity. On average, the highest geomagnetic activity, i.e., the minimum in Dst, occurs four days after a low-latitude coronal hole (CH) crosses the central meridian. The amplitude of the Dst dip is correlated with the CH area and depends on the magnetic polarity of the CH due to the Russell – McPherron effect. The Dst variation may be predicted by employing the expression Dst(t)=(−65±25×cos λ)[A(t *)]0.5, where A(t *) is the fractional CH area measured in the central-meridian slice [−10°,10°] of the solar disc, λ is the ecliptic longitude of the Earth, ± stands for positive/negative CH polarity, and tt *=4 days. In periods of low ICME activity, the proposed expression provides forecasting of the amplitude of the HSS-associated Dst dip to an accuracy of ≈30%. However, the time of occurrence of the Dst minimum cannot be predicted to better than ±2 days, and consequently, the overall mean relative difference between the observed and calculated daily values of Dst ranges around 50%.  相似文献   
996.
We have estimated a preliminary error budget for the Italian Spring Accelerometer (ISA) that will be allocated onboard the Mercury Planetary Orbiter (MPO) of the European Space Agency (ESA) space mission to Mercury named BepiColombo. The role of the accelerometer is to remove from the list of unknowns the non-gravitational accelerations that perturb the gravitational trajectory followed by the MPO in the strong radiation environment that characterises the orbit of Mercury around the Sun. Such a role is of fundamental importance in the context of the very ambitious goals of the Radio Science Experiments (RSE) of the BepiColombo mission. We have subdivided the errors on the accelerometer measurements into two main families: (i) the pseudo-sinusoidal errors and (ii) the random errors. The former are characterised by a periodic behaviour with the frequency of the satellite mean anomaly and its higher order harmonic components, i.e., they are deterministic errors. The latter are characterised by an unknown frequency distribution and we assumed for them a noise-like spectrum, i.e., they are stochastic errors. Among the pseudo-sinusoidal errors, the main contribution is due to the effects of the gravity gradients and the inertial forces, while among the random-like errors the main disturbing effect is due to the MPO centre-of-mass displacements produced by the onboard High Gain Antenna (HGA) movements and by the fuel consumption and sloshing. Very subtle to be considered are also the random errors produced by the MPO attitude corrections necessary to guarantee the nadir pointing of the spacecraft. We have therefore formulated the ISA error budget and the requirements for the satellite in order to guarantee an orbit reconstruction for the MPO spacecraft with an along-track accuracy of about 1 m over the orbital period of the satellite around Mercury in such a way to satisfy the RSE requirements.  相似文献   
997.
Hypothesis of possible superconductivity of the iced matter of the rings of Saturn (based on the data of Voyager and Pioneer space missions) allow us to explain many phenomena which have not been adequately understood earlier. Introducing into planetary physics force of magnetic levitation of the superconducting iced particle of the rings, which interact with magnetosphere of the planet, becomes to be possible to explain origin, evolution, and dynamics of the rings; to show how the consequent precipitation of the rings’ matter upon the planet was concluded; how the rings began their rotation; how they were compressed by the magnetic field into the thin disc, and how this disc was fractured into hundreds of thousands of separated rings; why in the ring B do exist “spokes”; why magnetic field lines have distortion near by ring F; why there is a variable azimuth brightness of the ring A; why the rings reflected radio waves so efficiently; why exists strong electromagnetic radiation of the rings in the 20.4 kHz–40.2 MHz range and Saturnian kilometric radiation; why there is anomalous reflection of circularly polarized microwaves; why there are spectral anomalies of the thermal radiation of the rings; why the matter of the various rings does not mix but preserves its small-scale color differences; why there is an atmosphere of unknown origin nearby the rings of Saturn; why there are waves of density and bending waves within Saturn’s rings; why planetary rings in the solar system appear only after the Belt of Asteroids (and may be the Belt of Asteroids itself is a ring for the Sun); why our planet Earth has no rings of its own.  相似文献   
998.
Many lens surveys have hitherto used observations of large samples of background sources to select the small minority which are multiply imaged by lensing galaxies along the line of sight. Recently surveys such as SLACS and OLS have improved the efficiency of surveys by pre-selecting double-redshift systems from SDSS. We explore other ways to improve survey efficiency by optimum use of astrometric and morphological information in existing large-scale optical and radio surveys. The method exploits the small position differences between FIRST radio positions of lensed images and the SDSS lens galaxy positions, together with the marginal resolution of some larger gravitational lens systems by the FIRST beam. We present results of a small pilot study with the VLA and MERLIN, and discuss the desirable criteria for future surveys.  相似文献   
999.
1000.
Hui Li  Jianqi You 《Solar physics》2009,258(1):89-104
On 11 January 2002, using the Multi-channel Infrared Solar Spectrograph (MISS) at the Purple Mountain Observatory (PMO), we obtained Hα, Ca ii 8542 Å and He i 10?830 Å spectra and slit-jaw Hα images of a peculiar solar limb event. A close resemblance of its intensity to that of a small flare and the GOES X-ray flux indicates that it was an active prominence. However, its morphological evolution and velocity variation were different from general typical active prominences, such as limb flares, post-flare loops, surges and sprays. It started with the ejection of material from the flare site. In the early phase, the ejecta was as bright as a limb flare and kept rising until reaching the height of (8????10)×104 km at an almost constant velocity of 91.7 km? s ?1 with its lower part always connected to the solar surface. EUV images in 195 Å show similar structure as in the Hα line, indicating the coexistence of plasmas with temperatures differing by more than two orders of magnitude. Later some material started to fall back to another bright area on the solar surface. The falling material did not show the collimated structure of surges or the arc structure of flaring arches. A red-shift velocity of more than 200 km? s ?1 was detected in a bright point close to the outer edge of the closed loop system formed later, which dispersed in a few minutes and became a part of the newly formed large loop. The ejected material did not leave the sun, indicating that the magnetic reconnection was not sufficient to remove the overlying field lines during the process. The spectral line profiles showed large widths and variable velocities, and therefore the line-pair method is not applicable to this event for the estimation of physical parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号