首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   2篇
大气科学   1篇
地球物理   18篇
地质学   34篇
海洋学   2篇
天文学   2篇
综合类   1篇
自然地理   3篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1990年   1篇
  1984年   1篇
  1982年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
41.
Coalified logs ranging in age from Late Pennsylvania to Miocene and in rank from lignite B to bituminous coal were analyzed by 13C nuclear magnetic resonance (NMR) utilizing the cross-polarization, magic-angle spinning technique, as well as by infrared spectroscopy. The results of this study indicate that at least three major stages of coalification can be observed as wood gradually undergoes transformation to bituminous coal. The first stage involves hydrolysis and loss of cellulose from wood with retention and differential concentration of the resistant lignin. The second stage involves conversion of the lignin residues directly to coalified wood of lignitic rank, during which the oxygen content of intermediate diagenetic products remains constant as the hydrogen content and the carbon content increases. These changes are thought to involve loss of methoxyl groups, water, and C3 side chains from the lignin. In the third major stage of coalification, the coalified wood increases in rank to subbituminous and bituminous coal; during this stage the oxygen content decreases, hydrogen remains constant, and the carbon content increases. These changes are thought to result from loss of soluble humic acids that are rich in oxygen and that are mobilized during compaction and dewatering. Relatively resistant resinous substances are differentially concentrated in the coal during this stage. The hypothesis that humic acids are formed as mobile by-products of the coalification of lignin and function only as vehicles for removal of oxygen represents a dramatic departure from commonly accepted views that they are relatively low-molecular-weight intermediates formed during the degradation of lignin that then condense to form high-molecular-weight coal structures.  相似文献   
42.
43.
44.
In a review of the role of plants in river systems, Gurnell (2014) explains how living riparian vegetation can moderate and manipulate river environments by trapping sediment and promoting longer‐term stability. Although the review concentrates on perennial plants in the humid temperate zone, this commentary acts as a reminder that some plants in other kinds of fluvial environment do not act in this way. This is done by describing how Impatiens glandulifera (Himalayan Balsam), a highly invasive annual plant that is now found in many countries on three separate continents, may significantly increase soil erosion along riverbanks and the riparian zone of inland watercourses. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
45.
Three samples of eclogite from the Balma Unit, an ophiolite sheet on top of the Monte Rosa Nappe in the Pennine Alps, were investigated in terms of their P-T evolution, geochemistry, and Lu-Hf geochronology. The paleogeographic origin of this unit is controversial (North Penninic vs. South Penninic). It has been interpreted as a piece of Late Cretaceous oceanic crust, on the basis of ca. 93 Ma U-Pb SHRIMP ages of synmagmatic zircon cores in an eclogite. Trace element and isotope data suggest a mid ocean ridge (MOR) rather than an intraplate or OIB setting for the protoliths of the eclogites. Electron microprobe analyses of representative garnets show typical prograde zoning profiles. Estimated peak metamorphic temperatures of 550–600 Cº most likely did not exceed the closure temperature of the Lu-Hf system. Hence, Lu-Hf ages most likely reflect garnet growth in the studied samples. To minimize inclusion effects on age determinations, a selective digestion procedure for garnet was applied, in which zircon and rutile inclusions are not dissolved. The ages obtained for three samples, 42.3 ± 0.6 Ma (MSWD: 0.47), 42 ± 1 Ma (MSWD: 3.0) and 45.5 ± 0.3 Ma (MSWD: 0.33), are younger than all Lu-Hf ages reported so far for South Penninic Units. Metamorphic zircon domains of the 42.3 Ma sample (PIS1) were previously dated by U-Pb SHRIMP at 40.4 ± 0.7 Ma, indicating that the growth of metamorphic zircon post-dated the onset of garnet growth.These new data put important constraints on the paleogeographic reconstruction of the Alps. The MORB character of the rocks, together with their previously published protolith age, imply that oceanic spreading was still taking place in the Late Cretaceous. This supports a North Penninic origin for our samples because plate tectonic models predict Cretaceous spreading in the North Penninic but not in the South Penninic Ocean. If the Balma Unit is indeed North Penninic, the new Lu-Hf data, in combination with published geochronological data, require that two independent subduction zones consumed the South and North Penninic oceans.  相似文献   
46.
The calcium isotope ratios (δ44Ca = [(44Ca/40Ca)sample/(44Ca/40Ca)standard −1] · 1000) of Orbulina universa and of inorganically precipitated aragonite are positively correlated to temperature. The slopes of 0.019 and 0.015‰ °C−1, respectively, are a factor of 13 and 16 times smaller than the previously determined fractionation from a second foraminifera, Globigerinoides sacculifer, having a slope of about 0.24‰ °C−1. The observation that δ44Ca is positively correlated to temperature is opposite in sign to the oxygen isotopic fractionation (δ18O) in calcium carbonate (CaCO3). These observations are explained by a model which considers that Ca2+-ions forming ionic bonds are affected by kinetic fractionation only, whereas covalently bound atoms like oxygen are affected by kinetic and equilibrium fractionation. From thermodynamic consideration of kinetic isotope fractionation, it can be shown that the slope of the enrichment factor α(T) is mass-dependent. However, for O. universa and the inorganic precipitates, the calculated mass of about 520 ± 60 and 640 ± 70 amu (atomic mass units) is not compatible with the expected ion mass for 40Ca and 44Ca. To reconcile this discrepancy, we propose that Ca diffusion and δ44Ca isotope fractionation at liquid/solid transitions involves Ca2+-aquocomplexes (Ca[H2O]n2+ · mH2O) rather than pure Ca2+-ion diffusion. From our measurements we calculate that such a hypothesized Ca2+-aquocomplex correlates to a hydration number of up to 25 water molecules (490 amu). For O. universa we propose that their biologically mediated Ca isotope fractionation resembles fractionation during inorganic precipitation of CaCO3 in seawater. To explain the different Ca isotope fractionation in O. universa and in G. sacculifer, we suggest that the latter species actively dehydrates the Ca2+-aquocomplex before calcification takes place. The very different temperature response of Ca isotopes in the two species suggests that the use of δ44Ca as a temperature proxy will require careful study of species effects.  相似文献   
47.
Calcium Isotopic Composition of Various Reference Materials and Seawater   总被引:1,自引:0,他引:1  
A compilation of δ44/40Ca (δ44/40Ca) data sets of different calcium reference materials is presented, based on measurements in three different laboratories (Institute of Geological Sciences, Bern; Centre de Géochimie de la Surface, Strasbourg; GEOMAR, Kiel) to support the establishment of a calcium isotope reference standard. Samples include a series of international and internal Ca reference materials, including NIST SRM 915a, seawater, two calcium carbonates and a CaF2 reference sample. The deviations in δ44/40Ca for selected pairs of reference samples have been defined and are consistent within statistical uncertainties in all three laboratories. Emphasis has been placed on characterising both NIST SRM 915a as an internationally available high purity Ca reference sample and seawater as representative of an important and widely available geological reservoir. The difference between δ44/40Ca of NIST SRM 915a and seawater is defined as -1.88 O.O4%o (δ44/42CaNISTSRM915a/Sw= -0.94 0.07%o). The conversion of values referenced to NIST SRM 915a to seawater can be described by the simplified equation δ44/40CaSa/Sw44/40CaSa/NIST SRM 915a - 1.88 (δ44/42CaSa/Sw44/42CaSa/NIST SRM 915a - 0.94). We propose the use of NIST SRM 915a as general Ca isotope reference standard, with seawater being defined as the major reservoir with respect to oceanographic studies.  相似文献   
48.
The Seve Nappe Complex of the Scandinavian Caledonides is thought to be derived from the distal passive margin of Baltica which collided with Laurentia in the Scandian Phase of the Caledonian Orogeny at 430–400 Ma. Parts of the Seve Nappe Complex were affected by pre-Scandian high- and ultrahigh-pressure metamorphism, in a tectonic framework that is still unclear, partly due to uncertainties about the exact timing. Previous age determinations yielded between ~ 505 and ~ 446 Ma, with a general trend of older ages in the North (Norrbotten) than in the South (Jämtland). New age determinations were performed on eclogite and garnet–phengite gneiss at Tjeliken in northern Jämtland. Thermodynamic modelling yielded peak metamorphic conditions of 25–27 kbar/680–760 °C for the garnet–phengite gneiss, similar to published peak metamorphic conditions of the eclogite (25–26 kbar/650–700 °C). Metamorphic rims of zircons from the garnet–phengite gneiss were dated using secondary ion mass spectrometry and yielded a concordia age of 458.9 ± 2.5 Ma. Lu–Hf garnet-whole rock dating yielded 458 ± 1.0 Ma for the eclogite. Garnet in the eclogite shows prograde major-element zoning and concentration of Lu in the cores, indicating that this age is related to garnet growth during pressure increase, i.e. subduction. The identical ages from both rock types, coinciding with published Sm–Nd ages from the eclogite, confirm subduction of the Seve Nappe Complex in Northern Jämtland during the Middle Ordovician in a fast subduction–exhumation cycle.  相似文献   
49.
Dryland rivers are recognized for limited research and high uncertainties with respect to understanding biogeomorphic processes. This study uses aerial photography, sediment analysis, palynology indicators and hydraulic modelling to investigate the role of riparian vegetation in influencing the response of systems to disturbance, the trajectory of channel evolution and the potential for management. The study focuses on cleared and uncleared sites in the Yerritup catchment, along the south coast of Western Australia, that occur along a transect with a consistent stream gradient and landscape topographic setting. Downstream reaches show no gross botanical change, but gradual sediment deposition across the floodplain of up to 40 cm based on palynological and sedimentary indicators. Channel response in the cleared section by incision, widening and floodplain degradation began rapidly after land clearing, but is driven by large flood events. Degradation of riparian vegetation has significantly increased the sensitivity of the system. The cleared reaches have transformed from a low‐capacity channel, under‐adjusted to the prevailing flow regime, to the large present channel that is now over‐adjusted to the predominantly low to moderate seasonal (occasional flood) flow regime. Modelling of pre‐settlement erosive potential reveals that the entire system was naturally sensitive to change, and was primed to erode once riparian vegetation was removed. The trajectory of channel evolution and the role of riparian vegetation is examined in relation to undisturbed reaches in the system and an appreciation of the historical range of variability in geomorphic response. Analysis of the patterns of contemporary vegetation growth identify the potential to re‐establish vegetation where it is elevated from saline baseflow. However, the system is assessed as being close to a threshold where restoration is no longer possible and remediation options become more limited as eco‐hydraulic and hydrochemical changes continue. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
50.
We investigated the influences of temperature, salinity and pH on the calcium isotope as well as trace and minor element (uranium, strontium, magnesium) to Ca ratios on calcium carbonate cysts of the calcareous dinoflagellate species Thoracosphaera heimii grown in laboratory cultures. The natural habitat of this species is the photic zone (preferentially at the chlorophyll maximum depth) of temperate to tropical oceans, and it is abundant in deep-sea sediments over the entire Cenozoic. In our experiments, temperatures ranged from 12 to 30 °C, salinity from 36.5 to 38.8 and pH from 7.9 to 8.4. The δ44/40Ca of T. heimii cysts resembles that of other marine calcifiers, including coccolithophores, foraminifers and corals. However, its temperature sensitivity is considerably smaller and statistically insignificant, and T. heimii might serve as a recorder of changes in seawater δ44/40Ca over geologic time. The Sr/Ca ratios of T. heimii cysts show a pronounced temperature sensitivity (0.016 mmol/mol °C? 1) and have the potential to serve as a palaeo-sea surface temperature proxy. No clear temperature- and pH-dependences were observed for Mg/Ca. U/Ca seems to be influenced by temperature and pH, but the correlations change sign at 23 °C and pH 8.2, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号