首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   8篇
  国内免费   6篇
测绘学   2篇
大气科学   39篇
地球物理   61篇
地质学   114篇
海洋学   17篇
天文学   7篇
自然地理   29篇
  2023年   1篇
  2021年   5篇
  2020年   8篇
  2019年   6篇
  2018年   8篇
  2017年   3篇
  2016年   14篇
  2015年   6篇
  2014年   10篇
  2013年   16篇
  2012年   13篇
  2011年   16篇
  2010年   13篇
  2009年   17篇
  2008年   5篇
  2007年   9篇
  2006年   11篇
  2005年   11篇
  2004年   10篇
  2003年   11篇
  2002年   7篇
  2001年   6篇
  2000年   11篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
  1985年   2篇
  1984年   5篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有269条查询结果,搜索用时 15 毫秒
41.
42.
Since 1970, the worldwide distribution, frequency and intensity of epidemics of dengue and dengue haemorrhagic fever (DHF) have increased dramatically. In Indonesia, as elsewhere, the geographic distribution and behaviour of the two main vectors – Aedes aegypti and Aedes albopictus – and the consequent transmission dynamics of the disease are strongly influenced by climate. Monthly incidence data were examined in relation to monthly data for temperature, rainfall, rainfall anomalies, humidity and the Southern Oscillation Index for 1992–2001. Focusing on eight provinces, significant Pearson correlations were observed between dengue/DHF incidence and at least one climate variable ( r  = ±0.2 to ±0.43; P  < 0.05). Multiple regression analyses showed that 12.9–24.5 per cent of variance in incidence was explained by two or three climate variables in each province ( P  < 0.1–0.01). Rainfall appears to be the principal climatic agent affecting the geographic distribution and temporal pattern of incidence while temperature appears to play a critical role in outbreak intensity. Wide regional and temporal variations in the strength and nature of the observed associations led to the identification of three groups of provinces where increases in dengue/DHF incidence were variously associated with increased rainfall, decreased rainfall and/or high susceptibility to climate variability. Although climatic factors play an important role in explaining the timing and intensity of dengue/DHF outbreaks, a wide range of other factors specific to local environments also appear to be involved – information that may assist in the prediction and mitigation of regional dengue/DHF outbreaks.  相似文献   
43.
Fresh water availability has recently become a serious concern in the Italian Apennines, as various activities rely on a predictable supply. Along the ridge between Scansano and Magliano in Toscana, in southern Tuscany, the situation is further complicated by contamination of the nearby alluvial aquifers. Aquifers locally consist of thin fractured reservoirs, generally within low-permeability formations, and it can be difficult to plan the exploitation of resources based on conventional techniques. An integrated study based on geological data investigated the link between tectonics and groundwater circulation, to better define the hydrological model. After the regional identification of fault and fracture patterns, a major structure was investigated in detail to accurately map its spatial position and to understand the geometry and properties of the associated aquifer and assess its exploitation potential. The subsurface around the fault zone was clearly imaged using ground probing radar, two-dimensional and three-dimensional resistivity tomography, and three-dimensional shallow seismic surveys. The vertical and horizontal contacts between the different geological units of the Ligurian and Tuscan series were resolved with a high degree of spatial accuracy. Three-dimensional high-resolution geophysical imaging proved to be a very effective means of characterising small-scale fractured reservoirs.  相似文献   
44.
Integrated, in situ textural, chemical and electron microprobe age analysis of monazite grains in a migmatitic metapelitic gneiss from the western Musgrave Block, central Australia has identified evidence for multiple events of growth and recrystallisation during poly-metamorphism in the Mesoproterozoic. Garnet + sillimanite-bearing metapelite underwent partial melting and segregation to palaeosome and leucosome during metamorphism between 1330 and 1296 Ma, with monazite grains in leucosome recording crystallisation at 1300 Ma. Monazite breakdown during melting is inferred to have occurred in the palaeosome. During a subsequent granulite facies event at 1200 Ma, deformation and metamorphism of leucosome and palaeosome resulted in partial disturbance of ages and potential minor growth on 1300 Ma monazite in leucosome. Growth of new, high-Y (+HREE) monazite in palaeosome domains occurred during garnet breakdown in the presence of sillimanite to cordierite and spinel, as a result of post-peak isothermal decompression. Diffusive enrichment of resorbed garnet rims in Y + HREE suggests garnet breakdown occurred slower than volume diffusion of REE. Monazite in both palaeosome and leucosome were subsequently partially to penetratively recrystallised during a retrogression event that is suggested to have occurred at 1150–1130 Ma. The intensity of recrystallisation and disturbance of ages appears linked to proximity to retrogressed garnet porphyroblasts and their occurrence in the relatively reactive or ‘fertile’ local environments provided by the palaeosome/mesosome volumes, which caused localised changes in retrogressive fluids towards compositions more aggressive to monazite. Like reaction textures, it is apparent that domainal equilibrium and reaction may control or at least strongly influence monazite REE and U–Th–Pb chemistry and hence ages.  相似文献   
45.
Australian meteorological observers started using the World Meteorological Organization (WMO) weather coding system in the 1950s. This system is still in use around the world today. However, observing and recording the weather in an organized and systematic manner had been ongoing for over 100 years prior to the adoption of this coding system, and much like Australia, most countries will have historical meteorological records. In this paper we compare the wind erosion of two of the greatest droughts in Australian recorded history; the World War II (WWII) Drought (1937–1945) and the Millennium Drought (2001–2009). To do this we analysed previously unavailable meteorological observer records from the Australian Bureau of Meteorology (ABM). Wind erosion records, mostly in long‐hand written form, were translated to the modern WMO coding system for the WWII Drought and compared with the wind erosion of Australia's recently‐ended Millennium Drought, one of the longest and harshest on record. We quantify wind erosion using Dust Event Days (DED) and a modified version of a published Dust Storm Index (DSI) to show that wind erosion during the WWII Drought was up to 4.6 times higher than during the Millennium Drought. This study has international significance because it demonstrates a methodology for tracking changes in wind erosion over the past 75 years based on observer records available in every country with a history of organized weather observation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
46.
The Himalayan Foreland Basin in the Ganga Valley is key to assessing the pre‐collision relationship between cratonic India and the Himalaya – the world's largest mountain chain. The subsurface Ganga Supergroup, representing the sedimentary basement of the Ganga Valley, has been interpreted as a northern extension of the Proterozoic Vindhyan Supergroup in cratonic India. This interpretation is contentious because the depositional age of the Ganga Supergroup is not resolved: whereas the lower Ganga Supergroup is widely regarded as Proterozoic, the upper Ganga Supergroup has been variously inferred to include Neoproterozoic, lower Palaeozoic, or Cretaceous strata. Here, we integrate biostratigraphic and detrital zircon data from drill cores to show that the entire Ganga Supergroup is likely Proterozoic and can be correlated with Proterozoic successions on the northern Indian craton and in the Lesser Himalaya. This helps redefine the first‐order stratigraphic architecture and indicates broad depositional continuity along the northern Indian margin during the Proterozoic.  相似文献   
47.
This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are estimated to be currently living within watersheds exposed to water scarcity. Using the WCI, by 2050 under the A1B scenario, 0.5 to 3.1 billion people are exposed to an increase in water scarcity due to climate change (range across 21 GCMs). This represents a higher upper-estimate than previous assessments because scenarios are constructed from a wider range of GCMs. A substantial proportion of the uncertainty in the global-scale effect of climate change on water scarcity is due to uncertainty in the estimates for South Asia and East Asia. Sensitivity to the WCI and WSI thresholds that define water scarcity can be comparable to the sensitivity to climate change pattern. More of the world will see an increase in exposure to water scarcity than a decrease due to climate change but this is not consistent across all climate change patterns. Additionally, investigation of the effects of a set of prescribed global mean temperature change scenarios show rapid increases in water scarcity due to climate change across many regions of the globe, up to 2 °C, followed by stabilisation to 4 °C.  相似文献   
48.
The 2015 Paris Agreement commits countries to pursue efforts to limit the increase in global mean temperature to 1.5 °C above pre-industrial levels. We assess the consequences of achieving this target in 2100 for the impacts that are avoided, using several indicators of impact (exposure to drought, river flooding, heat waves and demands for heating and cooling energy). The proportion of impacts that are avoided is not simply equal to the proportional reduction in temperature. At the global scale, the median proportion of projected impacts avoided by the 1.5 °C target relative to a rise of 4 °C ranges between 62 and 95% across sectors: the greatest reduction is for heat wave impacts. The 1.5 °C target results in impacts that would be between 27 and 62% lower than with the 2 °C target. For each indicator, there are differences in the proportions of impacts avoided between regions depending on exposure and the regional changes in climate (particularly precipitation). Uncertainty in the proportion of impacts that are avoided for a specific sector depends on the range in the shape of the relationship between global temperature change and impact, and this varies between sectors.  相似文献   
49.
The team behind a successful project to broaden the understanding of astrochemistry – Serena Viti, Wendy Brown, Martin McCoustra, Helen Fraser, Nigel Mason and Robert Massey – recount how they went about it and what benefits resulted.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号