首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   8篇
  国内免费   6篇
测绘学   2篇
大气科学   39篇
地球物理   61篇
地质学   114篇
海洋学   17篇
天文学   7篇
自然地理   29篇
  2023年   1篇
  2021年   5篇
  2020年   8篇
  2019年   6篇
  2018年   8篇
  2017年   3篇
  2016年   14篇
  2015年   6篇
  2014年   10篇
  2013年   16篇
  2012年   13篇
  2011年   16篇
  2010年   13篇
  2009年   17篇
  2008年   5篇
  2007年   9篇
  2006年   11篇
  2005年   11篇
  2004年   10篇
  2003年   11篇
  2002年   7篇
  2001年   6篇
  2000年   11篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
  1985年   2篇
  1984年   5篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有269条查询结果,搜索用时 0 毫秒
31.
32.
空间尺度转换是近年来区域生态水文研究领域的一个基本研究问题。其需要主要是源于模型的输入数据与所能提供的数据空间尺度不一致以及模型所代表的地表过程空间尺度与所观测的地表过程空间尺度不吻合。综述了目前区域生态水文模拟研究中常用的空间尺度转换研究方法,包括向上尺度转换和向下尺度转换。详细论述了2种向下尺度转换方法: 统计学经验模型和动态模型。前者是通过将GCM大尺度数据与长期的历史观测数据比较从而建立统计学相关模型, 然后利用这个统计学经验模型进行向下的空间尺度转换. 然而动态模型并不直接对GCM数据进行向下尺度的转换,而是对与GCM进行动态耦合的区域气候模型(RCM) 的输出数据进行空间尺度转换. 通常后者所获得的数据精度要比前者高,但是一个主要缺点就是并不是全球所有的研究区域都有对应的RCM。还详细论述了2种向上尺度转换方法: 统计学经验模型和斑块模型。前者是建立一个能代表小尺度信息在大尺度上分布的密度分布概率函数, 然后利用这个函数在所需的大尺度上进行积分而求得大尺度所需的信息。而后者是根据相似性最大化原则将大尺度划分为若干个可操作的小尺度斑块,然后将计算的每个小尺度斑块的信息平均化得到大尺度所需的信息。通常在计算这种斑块化的小尺度信息的时候,对每个小尺度也会采用统计学经验模型来计算代表整个斑块小尺度的信息。建议用斑块模型与统计学经验模型相集合的方法来实现向上的空间尺度转换  相似文献   
33.
Abstract

Rule-based classifiers are used regularly with geographical information systems to map categorical attributes on the basis of a set of numeric or unordered categorical attributes. Although a variety of methods exist for inducing rule-based classifiers from training data, these tend to produce large numbers of rules when the data has noise. This paper describes a method for inducing compact rule-sets whose classification accuracy can, at least in some domains, compare favourably with that achieved by larger less succinct rule-sets produced by alternative methods. One rule is induced for each output class. The condition list for this rule represents a box in n-dimensional attribute space, formed by intersecting conditions which exclude other classes. Despite this simplicity, the classifier performed well in the test application prediction of soil classes in the Port Hills, New Zealand, on the basis of regolith type and topographic attributes obtained from a digital terrain model.  相似文献   
34.
Nigel Thrift 《Geoforum》2002,33(3):291-298
This paper is an attempt to assess the current state and future prospects of Geography especially but not only in Britain. It is quasi-polemical and should be read in that spirit. The paper looks first at the notable successes of physical and human geography. It then considers how these successes are being buttressed by current events taking place in the world. Next, the paper considers the main problems that beset geography. Finally, however, the paper ends on another positive note by considering some of the exciting new developments that are now taking place in the discipline which will allow it to relate to more of the many worlds that make up geography's vocation.  相似文献   
35.
This paper reconstructs precipitation variability in the southern Canadian Cordillera over the past 3–400 years using dendroclimatologicaltechniques. Fifty-three total ring-width (RW) chronologies, 28 earlywood (EW) and 28 latewood (LW) chronologies were developed from open-grown, low-elevation stands of Pseudotsuga menziesii (Douglas-fir) and Pinusponderosa (ponderosa pine) across the southern Canadian Cordillera. RW, EW and LW chronologies from both species were used to develop 13 annual (prior July to current June) precipitation reconstructions across the region. The reconstructions range in length from 165 to 688 years, pass verification tests and capture 39–64% of the variancein the instrumental record. Coincident, prolonged intervals of dry conditions are estimated for the years: 1717–1732, 1839–1859, 1917–1941 and1968–1979. Shorter dry intervals are identified between 1581–1586, 1626–1630,1641–1653 1701–1708, 1756–1761, 1768–1772, 1793–1800,1868–1875, 1889–1897 and 1985–1989. The historic drought of the 1920–1930s was the longest but not the most intense across this area in the last 300 years. Wet conditions occur in the majority of reconstructions for the years: 1689–1700, 1750–55,1778–1789, 1800–1830, 1880–1890, 1898–1916 and 1942–1960. Thesedata, in conjunction with data from adjacent areas, are used to provide the first maps of decadal precipitation anomalies for the region between 1700 and 1990.  相似文献   
36.
The major controls of rockfall activity are divided into two interacting groups. (a)Climatic factors which, through their control of temperatures and the availability and state of water, are primary controls of rockfall trigger mechanisms. (b) Geologic factors which, via cliff form (plan, profile, dissection etc.) and the character and availability of materials, influence the type, spatial distribution and intensity of rockfall activity. Detailed examination of these controls suggest that both seasonal and daily patterns of rockfall activity can vary markedly over a very small area. The implications of this variability for the design and interpretation of rockfall inventories are discussed using sample data from Surprise Valley, Jasper National Park, for the period from May-October 1969. On a seasonal basis rockfall activity showed a major spring peak with secondary maxima in the fall and associated with major summer storms. Two sites of differing aspect and morphology were studied in more detail revealing marked differences in the mean hourly frequency (0·94:0·20), mean hourly probability (0·40:0·16, hours with rockfall/hours observed) and daily pattern of rockfall activity. The west facing site showed equal hourly probability of rockfalls from 1000 to 2000 hr whereas the east facing slope had a greater hourly probability when it was in the sun (1100 1400hr) than in the shade (1400-1900hr). The differences in rockfall frequency and probabilities reflect the physical characteristics of the individual sites whereas the daily pattern of rockfalls is related to microclimate. These results suggest that if future inventory studies are to make a significant contribution, they must be carefully designed field experiments in which. (i) Data are restricted to the study or comparison of single continuously observed sites. (ii) Study sites and/or data periods are carefully selected to isolate and investigate specific controls e.g. the influence of cliff form, aspect, periods of rainfall etc. on rockfall patterns. (iii) Good on-site microclimate data are available. Also comparison of frequency measures based on the arithmetic mean should be avoided since the distribution of rockfalls per hour closely follows a Poisson distribution with occasional high values which unduly influence the value of the arithmetic mean. It is suggested that rockfall probabilities, based on the binary decision of whether or not a rockfall occurs in a given period, are a more useful measure for daily patterns of rockfall activity.  相似文献   
37.
The lower Bomi Group of the eastern Himalayan syntaxis comprises a lithological package of sedimentary and igneous rocks that have been metamorphosed to upper amphibolite-facies conditions. The lower Bomi Group is bounded to the south by the Indus–Yarlung Suture and to the north by unmetamorphosed Paleozoic sediments of the Lhasa terrane. We report U–Pb zircon dating, geochemistry and petrography of gneiss, migmatite, mica schist and marble from the lower Bomi Group and explore their geological implications for the tectonic evolution of the eastern Himalaya. Zircons from the lower Bomi Group are composite. The inherited magmatic zircon cores display 206Pb/238U ages from ~ 74 Ma to ~ 41.5 Ma, indicating a probable source from the Gangdese magmatic arc. The metamorphic overgrowth zircons yielded 206Pb/238U ages ranging from ~ 38 Ma to ~ 23 Ma, that overlap the anatexis time (~ 37 Ma) recorded in the leucosome of the migmatites. Our data indicate that the lower Bomi Group do not represent Precambrian basement of the Lhasa terrane. Instead, the lower Bomi Group may represent sedimentary and igneous rocks of the residual forearc basin, similar to the Tsojiangding Group in the Xigaze area, derived from denudation of the hanging wall rocks during the India–Asia continental collision. We propose that following the Indian–Asian collision, the forearc basin was subducted, together with Himalayan lithologies from the Indian continental slab. The minimum age of detrital magmatic zircons from the supracrustal rocks is ~ 41.5 Ma and their metamorphism had happened at ~ 37 Ma. The short time interval (< 5 Ma) suggests that the tectonic processes associated with the eastern Himalayan syntaxis, encompassing uplift and erosion of the Gangdese terrane, followed by deposition, imbrication and subduction of the forearc basin, were extremely rapid during the Late Eocene.  相似文献   
38.
Gas hydrates are a potential energy resource, a possible factor in climate change and an exploration geohazard. The University of Toronto has deployed a permanent seafloor time‐domain controlled source electromagnetic (CSEM) system offshore Vancouver Island, within the framework of the NEPTUNE Canada underwater cabled observatory. Hydrates are known to be present in the area and due to their electrically resistive nature can be monitored by 5 permanent electric field receivers. However, two cased boreholes may be drilled near the CSEM site in the near future. To understand any potential distortions of the electric fields due to the metal, we model the marine electromagnetic response of a conductive steel borehole casing. First, we consider the commonly used canonical model consisting of a 100 Ωm, 100 m thick resistive hydrocarbon layer embedded at a depth of 1000 m in a 1 Ωm conductive host medium, with the addition of a typical steel production casing extending from the seafloor to the resistive zone. Results show that in both the frequency and time domains the distortion produced by the casing occurs at smaller transmitter‐receiver offsets than the offsets required to detect the resistive layer. Second, we consider the experimentally determined model of the offshore Vancouver Island hydrate zone, consisting of a 5.5 Ωm, 36 m thick hydrate layer overlying a 0.7 Ωm sedimentary half‐space, with the addition of two borehole casings extending 300 m into the seafloor. In this case, results show that the distortion produced by casings located within a 100 m safety zone of the CSEM system will be measured at 4 of the 5 receivers. We conclude that the boreholes must be positioned at least 200 m away from the CSEM array so as to minimize the effects of the casings.  相似文献   
39.
Both the rate and the vertical distribution of soil disturbance modify soil properties such as porosity, particle size, chemical composition and age structure; all of which play an important role in a soil's biogeochemical functioning. Whereas rates of mixing have been previously quantified, the nature of bioturbation's depth dependence remains poorly constrained. Here we constrain, for the first time, the relationship between mixing rate and depth in a bioturbated soil in northeast Queensland, Australia using a novel method combining OSL (optically‐stimulated luminescence) ages and meteoric beryllium‐10 (10Be) inventories. We find that the best fit mixing rate decreases non‐linearly with increasing soil depth in this soil and the characteristic length scale of 0.28 m over which the mixing coefficient decays is comparable to reported rooting depth coefficients. In addition we show that estimates of surface mixing rates from OSL data are highly dependent on erosion rate and that erosion rate must be constrained if accurate mixing rates are to be quantified. We calculate surface diffusion‐like mixing coefficients of 1.8 × 10?4 and 2.1 × 10?4 m2 yr?1 for the studied soil for two different estimates of soil erosion. © 2014 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
40.
The Himalayan Foreland Basin in the Ganga Valley is key to assessing the pre‐collision relationship between cratonic India and the Himalaya – the world's largest mountain chain. The subsurface Ganga Supergroup, representing the sedimentary basement of the Ganga Valley, has been interpreted as a northern extension of the Proterozoic Vindhyan Supergroup in cratonic India. This interpretation is contentious because the depositional age of the Ganga Supergroup is not resolved: whereas the lower Ganga Supergroup is widely regarded as Proterozoic, the upper Ganga Supergroup has been variously inferred to include Neoproterozoic, lower Palaeozoic, or Cretaceous strata. Here, we integrate biostratigraphic and detrital zircon data from drill cores to show that the entire Ganga Supergroup is likely Proterozoic and can be correlated with Proterozoic successions on the northern Indian craton and in the Lesser Himalaya. This helps redefine the first‐order stratigraphic architecture and indicates broad depositional continuity along the northern Indian margin during the Proterozoic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号