首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   13篇
  国内免费   3篇
测绘学   3篇
大气科学   25篇
地球物理   47篇
地质学   39篇
海洋学   19篇
天文学   13篇
综合类   3篇
自然地理   43篇
  2023年   3篇
  2021年   1篇
  2020年   3篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   14篇
  2015年   4篇
  2014年   4篇
  2013年   20篇
  2012年   4篇
  2011年   6篇
  2010年   10篇
  2009年   7篇
  2008年   8篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2003年   5篇
  2002年   2篇
  2001年   9篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
141.
The prediction of the morphological evolution of renaturalized streams is important for the success of restoration projects. Riparian vegetation is a key component of the riverine landscape and is therefore essential for the natural rehabilitation of rivers. This complicates the design of morphological interventions, since riparian vegetation is influenced by and influences the river dynamics. Morphodynamic models, useful tools for project planning, should therefore include the interaction between vegetation, water flow and sediment processes. Most restoration projects are carried out in USA and Europe, where rivers are highly intervened and where the climate is temperate and vegetation shows a clear seasonal cycle. Taking into account seasonal variations might therefore be relevant for the prediction of the river morphological adaptation. This study investigates the morphodynamic effects of riparian vegetation on a re‐meandered lowland stream in the Netherlands, the Lunterse Beek. The work includes the analysis of field data covering 5 years and numerical modelling. The results allow assessment of the performance of a modelling tool in predicting the morphological evolution of the stream and the relevance of including the seasonal variations of vegetation in the computations. After the establishment of herbaceous plants on its banks, the Lunterse Beek did not show any further changes in channel alignment. This is here attributed to the stabilizing effects of plant roots together with the small size of the stream. It is expected that the morphological restoration of similarly small streams may result in important initial morphological adaptation followed by negligible changes after full vegetation establishment. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
142.
In mixed bedrock–alluvial rivers, the response of the system to a flood event can be affected by a number of factors, including coarse sediment availability in the channel, sediment supply from the hillslopes and upstream, flood sequencing and coarse sediment grain size distribution. However, the impact of along-stream changes in channel width on bedload transport dynamics remains largely unexplored. We combine field data, theory and numerical modelling to address this gap. First, we present observations from the Daan River gorge in western Taiwan, where the river flows through a 1 km long 20–50 m wide bedrock gorge bounded upstream and downstream by wide braidplains. We documented two flood events during which coarse sediment evacuation and redeposition appear to cause changes of up to several metres in channel bed elevation. Motivated by this case study, we examined the relationships between discharge, channel width and bedload transport capacity, and show that for a given slope narrow channels transport bedload more efficiently than wide ones at low discharges, whereas wider channels are more efficient at high discharges. We used the model sedFlow to explore this effect, running a random sequence of floods through a channel with a narrow gorge section bounded upstream and downstream by wider reaches. Channel response to imposed floods is complex, as high and low discharges drive different spatial patterns of erosion and deposition, and the channel may experience both of these regimes during the peak and recession periods of each flood. Our modelling suggests that width differences alone can drive substantial variations in sediment flux and bed response, without the need for variations in sediment supply or mobility. The fluctuations in sediment transport rates that result from width variations can lead to intermittent bed exposure, driving incision in different segments of the channel during different portions of the hydrograph. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
143.
Steep streams often feature a step-pool morphology where the steps determine channel stability and dissipate the stream's energy, and thus are important for local flow hydraulics and bedload transport. Steps also play a key-role for the coupling of channels and adjacent hillslopes by controlling hillslope stability. Although step-pool systems have been investigated in various modelling and experimental efforts, the processes of step formation and destruction remain under debate. Theories of step formation consider a wide range of dominant drivers and fall into three groups favouring hydraulic controls ( HC ), granular interactions during flow ( GI ) or random drivers ( RD ) as relevant factors for step location. A direct evaluation of these models with field observations is challenging, as step formation cannot be directly observed. Based on the physical mechanisms of the various formation models we derive diagnostic morphometric parameters and test them with a field data set from a steep stream in Switzerland. Our results suggest that one class of alluvial steps form due to jamming in narrow and narrowing sections of the channel, while steps in wide and widening sections form around rarely mobile keystones. These two models of step formation apply in our study reach at the same time in different locations of the channel. A third class of steps is forced by logs. Such steps are typically located close to the original growth position of the tree and therefore reflect strong channel-hillslope coupling. Wood-forced steps make up a minor fraction of the step population, but contribute significantly to the cumulative step height and are therefore relevant to reach-scale flow resistance of the channel. © 2019 John Wiley & Sons, Ltd.  相似文献   
144.
Salmon populations are highly variable in both space and time. Accurate forecasting of the productivity of salmon stocks makes effective management and conservation of the resource extremely challenging. Furthermore, widespread and consistent data on the productivity of species‐specific and total salmon stocks in a river are almost nonexistent. Ranking rivers based on physical complexity derived from remote sensing allows rivers to be objectively compared. Our approach considered rivers with great geomorphic complexity (e.g. having expansive, multichanneled floodplains and/or on‐channel lakes) as likely to have greater productivity of salmon than rivers flowing in constrained or canyon‐bound channels. Our objective was to develop a database of landscape metrics that could be used to rank the rivers in relation to potential salmon productivity. We then examined the rankings in relation to existing empirical (monitoring) data describing productivity of salmon stocks. To extract the metrics for each river basin we used a digital elevation model and multispectral satellite imagery. We developed procedures to extract channel networks, floodplains, on‐channel lakes and other catchment features; variables such as catchment area, channel elevation, main channel length, floodplain area, and density of hydrojunctions (nodes) were measured. We processed 1509 catchments in the North Pacific Rim including the Kamchatka Peninsula in Russia and western North America. Overall, catchments were most physically complex in western Kamchatka and western Alaska, and particularly on the Arctic North Slope of Alaska. We could not directly examine coherence between potential and measured productivity except for a few rivers, but the expected relationship generally held. The resulting database and systematic ranking are objective tools that can be used to address questions about landscape structure and biological productivity at regional to continental extents, and provide a way to begin to efficiently prioritize the allocation of funding and resources towards salmon management and conservation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
145.
The Qinling Mountain Range (33°–34°30′N, 107°–111°E; 3,767 m a.s.l.) lies south of the Chinese Loess Plateau and functions as the boundary between ‘north’ and ‘south’ China. Taibai Mountain (33°41′–34°10′N, 107°19′–107°58′E; 3,767 m a.s.l.) is the central massif and highest part of the range and is the highest mountain in eastern and central China, east of 105°E. It is also one of two mountains higher than the modern climatic timberline and the only one where high alpine lakes (>2,500 m a.s.l.) exist in eastern and central China. Sediments were recovered from Foye Chi (33°57′N, 107°44′E; 3,410 m a.s.l.), a small lake on the southern slope of the mountain, and measured for magnetic properties. Chronological control was achieved with AMS 14C dating. Combined with analyses of particle-size, TOC, C/N, δ13Corg and pollen in these sediments, and magnetic properties of catchment soils, the mineral-magnetic data reveal late Holocene palaeoenvironmental changes on the high-altitude southern slope of Taibai Mountain. Climate gradually ameliorated about 2,300 cal yr BP and warm and wet conditions occurred afterwards, culminating from 1,700 to 1,510 cal yr BP. The climate began to deteriorate at 1,510 cal yr BP, but was still warmer and wetter than present until ~663 cal yr BP. Cool, arid conditions peaked and were cooler and drier than the present at 663–290 cal yr BP, coincident with the Little Ice Age. Climate became warmer and more humid again after 290 cal yr BP. Data from these less anthropologically-disturbed alpine-lake sediments provide a record of late Holocene palaeoenvironmental change that supplements information from historical documents and literature for eastern and central China.  相似文献   
146.
The first marine sediment cores from the unexplored Independence Fjord system and the Wandel Sea, North Greenland, have been investigated to reveal the glacial marine history of the region. Two key sites in the Independence Fjord system, and an earlier analysed site from the Wandel Sea continental slope, off the mouth of Independence Fjord, are presented. The Independence Fjord sites reveal an early Holocene record (10.0–8.9 Kya) of fine-grained reddish muds with calcareous microfossils, dominated by the benthic foraminifera Cassidulina neoteretis . We suggest that a semi-permanent fast ice cover characterized the region in the early Holocene, and that the deeper troughs in the mouth region of the Independence Fjord system were intruded by subsurface Atlantic water. A stiff diamicton, at least 1.3 m thick, with coal and sandstone clasts of mainly local origin, and a 0.5-m-thick Holocene cover, are found in one of the sites. The diamicton is assumed to represent a subglacial till predating the early Holocene sediments (>10 Kya). Shallow seismic records off the mouth of Independence Fjord reveal kilometre-sized troughs with signs of glacial erosion, till deposition and a Holocene glaciomarine deposition. These features could indicate that glacial ice debouching from the Independence Fjord system at some time during the last glacial period extended to the mid-outer Wandel Sea shelf. Data from a high-resolution sediment core previously retrieved from the adjacent Wandel Sea slope indicate that the maximum ice sheet advance in this area culminated about 25–20 Kya.  相似文献   
147.
148.
The Caledonide Orogen in the Nordic countries is exposed in Norway, western Sweden, westernmost Finland, on Svalbard and in northeast Greenland. In the mountains of western Scandinavia, the structure is dominated by E-vergent thrusts with allochthons derived from the Baltoscandian platform and margin, from outboard oceanic (lapetus) terranes and with the highest thrust sheets having Laurentian affinities. The other side of this bivergent orogen is well exposed in northeastern Greenland, where W-vergent thrust sheets emplace Laurentian continental margin assemblages onto the platform. Svalbard's Caledonides are disrupted by late Caledonian faults, but have close affinity with the Laurentian margin in Northeast Greenland. Only Svalbard's Southwestern terrane is foreign to this margin, showing affinity, to the Pearya terrane of northern Ellesmere Island in arctic Canada. Between the margins of western Scandinavia and eastern Greenland, the wide continental shelves, now covered by late Paleozoic and younger successions, are inferred to be underlain by the Caledonide hinterland, probably incorporating substantial Grenville-age basement. In northernmost Norway, the NE-trending Caledonian thrust front truncates the NW-trending Neoproterozoic Timanide orogen of northwest Russia. Much of the central and eastern parts of the Barents Shelf are thought to be underlain by Caledonian-deformed Timanide basement.
Caledonian orogeny in Norden resulted from the closure of the Iapetus Ocean and Scandian collision of continent Baltica with Laurentia. Partial subduction of the Baltoscandian margin beneath Laurentia in the midlate Silurian was followed by rapid exhumation of the highly metamorphosed hinterland in the early Devonian, and deposition of Old Red Sandstones in intramontane basins. Late Scandian collapse of the orogen occurred on major extensional detachments, with defor mation persisting into the late Devonian.  相似文献   
149.
We have developed a simple, steady-state, one-dimensional second-order closure model to obtain continuous profiles of turbulent fluxes and mean concentrations of non-conserved scalars in a convective boundary layer without shear. As a basic tool we first set up a model for conserved species with standard parameterizations. This leads to formulations for profiles of the turbulent diffusivity and the ratio of temperature-scalar covariance to the flux of the passive scalar. The model is then extended to solving, in terms of profiles of mean concentrations and fluxes, the NO x –O3 triad problem. The chemical reactions involve one first-order reaction, the destruction of NO2 with decay time τ, and one second-order reaction, the destruction of NO and O3 with the reaction constant k. Since the fluxes of the sum concentrations of NO x = NO + NO2 and O3 + NO2 turn out to be constant throughout the boundary layer, the problem reduces to solving two differential equations for the concentration and the flux of NO2. The boundary conditions are the three surface fluxes and the fluxes at the top of the boundary layer, the last obtained from the entrainment velocity, and the concentration differences between the free troposphere and the top of the boundary layer. The equations are solved in a dimensionless form by using 1/() as the concentration unit, the depth h of the boundary layer as the length unit, the convective velocity scale w * as the velocity unit, and the surface temperature flux divided by w * as the temperature unit. Special care has been devoted to the inclusion of the scalar–scalar covariance between the concentrations of O3 and NO. Sample calculations show that the fluxes of the reactive species deviate significantly from those of non-reactive species. Further, the diffusivities, defined by minus the flux divided by the concentration gradient may become negative for reactive species in contrast to those of non-reactive species, which in the present model are never negative.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号