首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   636篇
  免费   36篇
  国内免费   10篇
测绘学   17篇
大气科学   51篇
地球物理   143篇
地质学   270篇
海洋学   69篇
天文学   82篇
综合类   2篇
自然地理   48篇
  2023年   3篇
  2022年   6篇
  2021年   12篇
  2020年   14篇
  2019年   15篇
  2018年   22篇
  2017年   27篇
  2016年   28篇
  2015年   35篇
  2014年   33篇
  2013年   41篇
  2012年   33篇
  2011年   43篇
  2010年   55篇
  2009年   52篇
  2008年   38篇
  2007年   50篇
  2006年   28篇
  2005年   27篇
  2004年   24篇
  2003年   13篇
  2002年   10篇
  2001年   4篇
  2000年   8篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   7篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   3篇
  1959年   1篇
  1952年   1篇
排序方式: 共有682条查询结果,搜索用时 15 毫秒
641.
Earthquakes in Switzerland and surrounding regions during 2004   总被引:1,自引:0,他引:1  
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2004. During this period, 677 earthquakes and 96 quarry blasts were detected and located in the region under consideration. With 22 events with ML≥2.5, the seismic activity in the year 2004 was close to the average over the last 30 years. As in previous years, most of the activity was concentrated in the Valais and in Graubünden. In addition, several moderate earthquakes occurred in the lower crust below the northern Alpine foreland. Unusual was that five earthquakes were sufficiently strong to cause ground shaking of intensity IV over large portions of the territory. Two were located in Switzerland (Liestal, ML 3.8, and Brugg, ML 4.0). The epicenters of the other three strong events were located outside Switzerland (Besan?on in the French Jura, ML 4.8, Waldkirch in southern Germany, ML 5.1, and Lago di Garda in northern Italy, ML 5.3).  相似文献   
642.
An accurate quantification of erosion, based on high-frequency monitoring of river discharge and suspended sediment fluxes is proposed for two watersheds in the western Paris Basin, a sensitive area with respect to erosion phenomena. This continuous monitoring makes it possible to include flood events of short duration, but significant erosion potential. The obtained erosion rate (16 and 21 t?km?2?yr?1) is among the weakest of the planet (3.5 to 18?000 t?km?2?yr?1). However, this annual balance does not reflect the behaviour of these rivers which can be torrential in certain cases. To cite this article: B. Laignel et al., C. R. Geoscience 338 (2006).  相似文献   
643.
The origin of chloride-rich karstic spring waters representative of the Languedoc-Roussillon region has been investigated with a hydrochemical approach. To this end, the major and trace elements most often used in the study of saline environments have been considered (Cl, SO4, Br, B, Li). This study allowed distinguishing the different end-members of the various chloride-rich karstic spring waters (evaporitic, marine, geothermal). Associated with the Cl, Br and B contents, the Li/SO4 ratio appeared as a relevant tracer for the determination of the origin of lithium and by extension of the considered waters. To cite this article: O. Hébrard et al., C. R. Geoscience 338 (2006).  相似文献   
644.
This study explores the sensitivity of tilt measurements to hydrogeologic phenomena in order to use them to characterise aquifers and explain the signals observed on the instruments. The challenge is to separate the hydrogeological contribution from other phenomena that affect this type of measurements. First, we applied the theory propounded by Farell (1972) and Pagiatakis (1990) to simple hydrogeological cases. Then a simulation of the tiltmeter signal obtained in the Seine valley reveals that the order of magnitude is significant: the signal of a load with hydrologic origin therefore represents a significant part of any tiltmeter signal. Moreover, it can be interpreted in hydrogeological terms: it depends directly on the load gradient through a convolution formalism. Consequently, it is possible to imagine a use of the tiltmeter in hydrogeology to characterise, to a certain extent, mass transfer of water in the ground. To cite this article: T. Rerolle et al., C. R. Geoscience 338 (2006).  相似文献   
645.
646.
Nearly water-saturated argillite samples (initial water content near 3.4 wt%) were cored from an undisturbed area of an underground facility of the French Institute for Radioprotection and Nuclear Safety (IRSN), located at Tournemire (Aveyron, France). These samples were subjected to the following desiccation path: (a) A desaturation phase during which the samples were dried at ambient temperature conditions, relative humidity equal to 43% in average and (b) a heating phase during which the same samples were heated at four temperature levels from 70°C up to 105°C. During both phases, the low-frequency complex resistivity (0.18Hz–12 kHz) was recorded by a four-electrode device. The amplitude of the complex resistivity was extremely sensitive to water content change. At the end of the isotherm desaturation phase, it was multiplied by a factor of 3 to 5. During the heating phase, the resistivity increased by more than two orders of magnitude compared to the initial state. The percentage of Frequency Effect shows a low sensitivity to water content changes during the desaturation stage while it increased by two orders of magnitude during the heating phase. This result confirms that low-frequency spectral signature is extremely sensitive to textural changes (i.e., thermal-induced microcracking in this case) that occurred during heating. Moreover, the complex resistivity of the samples shows a strong anisotropy (a ratio of 10 between both amplitudes measured in the perpendicular directions). The classical Cole-Cole model cannot be used to fit the experimental data obtained in the heating phase. A generalized formulation of this model is required and was successfully applied to represent the complex resistivity data.  相似文献   
647.
This study uses experiments with an atmospheric general circulation model (AGCM) to address the role of the oceans and the effect of land–atmosphere coupling on the predictability of summertime rainfall over northern Argentina focusing on interdecadal time scales during 1901–2006. Ensembles of experiments where the AGCM is forced with historical sea surface temperature (SST) in the global, Pacific and tropical-North Atlantic domains are used. The role of land–atmosphere interaction is assessed comparing the output of simulations with active and climatological soil moisture. A maximum covariance analysis between precipitation and SST reveals the impact of the Pacific Decadal Oscillation, the Atlantic Multidecadal Oscillation and the equatorial–tropical South Atlantic on rainfall over northern Argentina. Model simulations further show that while the dominant influence comes from the Pacific basin, the Atlantic influence can explain a large transition from dry to wet decades over northern Argentina during the beginning of the 1970s. Analysis of anomalies before and after the transition reveals an upper level anticyclonic circulation off the Patagonian coast with barotropic structure. This circulation enhances the moisture transport and convergence in northern Argentina and, together with enhanced evaporation, increased the rainfall after 1970. The SST pattern is dominated by cold conditions in the equatorial Atlantic and warm eastern Pacific and South Atlantic. We also found that land–atmosphere interaction leads to a representation of the long term rainfall evolution over northern Argentina that is closer to the observed one. Moreover, it leads to a smaller dispersion among ensemble members, thus resulting in a larger signal-to-noise ratio.  相似文献   
648.
Distributions and carbon isotopic compositions of microbial lipid biomarkers were investigated in sediment cores from the G11 and G12 pockmarks in the Nyegga sector of the Storegga Slide on the mid-Norwegian margin to explore differences in depth zonation, type and carbon assimilation mode of anaerobic methane-oxidizing archaea (ANMEs) and associated sulphate-reducing bacteria responsible for anaerobic oxidation of methane (AOM) in these cold seep environments. While the G11 site is characterised by black reduced sediments colonized by gastropods and Siboglinidae tubeworms, the G12 site has black reduced sediments devoid of fauna but surrounded by a peripheral occurrence of gastropods and white filamentous microbial mats. At both sites, bulk sediments contained abundant archaeal and bacterial lipid biomarkers substantially depleted in 13C, consisting mainly of isoprenoidal hydrocarbons and dialkyl glycerol diethers, fatty acids and non-isoprenoidal monoalkylglycerol ethers. At the G11 site, down-core profiles revealed that lipid biomarkers were in maximum abundance from 10 cm depth to the core bottom at 16 cm depth, associated with δ13C values of ?57 to ?136‰. At the G12 site, by contrast, lipid biomarkers were in high abundance in the upper 5 cm sediment layer, associated with δ13C values of ?43 to ?133‰. This suggests that, as expected from the benthic fauna characteristics of the sites, AOM takes place mainly at depth in the G11 pockmark but just below the seafloor in the G12 pockmark. These patterns can be explained largely by variable fluid flow rates. Furthermore, at both sites, a dominance of ANME-2 archaea accompanied by their bacterial partners is inferred based on lipid biomarker distributions and carbon isotope signatures, which is in agreement with recently published DNA analyses for the G11 pockmark. However, the present data reveal high discrepancies in the contents and δ13C values for both archaeal and bacterial lipid profiles, implying the possible involvement of at least two distinct AOM-related microbial consortia at the inferred AOM depth zonation of G11 and G12 pockmark sediments. In both sediment cores, the δ13C profiles for most archaeal lipids suggest a direct assimilation of dissolved inorganic carbon (DIC) in addition to methane by ANMEs (chemoautotrophy); constant and highly depleted δ13C profiles for PMI:3, an archaeal lipid biomarker presumably related to ANME-2, suggest a direct assimilation of 13C-depleted methane-derived carbon via AOM (methanotrophy). Evidently, the common approach of investigating lipid biomarker contents and δ13C signatures in cold seep sediments does not suffice to precisely discriminate between the carbon assimilation mode for each ANME archaeal group and associated bacteria. Rather, this needs to be combined with further specific labelling studies including different carbon sources (methane carbon, methane-derived organic intermediates and DIC) in order to unravel the metabolic pathways of each microbial consortium involved in AOM (ANME-1 vs. ANME-2 vs. ANME-3 archaeal group and associated bacteria).  相似文献   
649.
The thermodynamic, structural and transport properties of natural silicate melts under pressure are investigated by molecular dynamics simulation with the help of a force field recently introduced by us [Guillot B. and Sator N. (2007) A computer simulation study of natural silicate melts. Part I: low pressure properties. Geochim. Cosmochim. Acta71, 1249-1265]. It is shown that the simulation reproduces accurately the bulk moduli of a large variety of silicate liquids as evaluated from ultrasonic studies. The equations of state (EOS) of the simulated melts are in good agreement with the density data on mid-ocean ridge basalt, komatiite, peridotite and fayalite as obtained either by sink/float experiments or by shock-wave compression. From the structural point of view it is shown that the population of [5]Al and [6]Al species increases rapidly upon initial compression (0-50 kbar) whereas for Si these highly coordinated species are found in a significant abundance (>5%) only above ∼50 kbar for [5]Si and ∼100-150 kbar for [6]Si. This increase of the coordination of network formers is not the only response of the melt structure to the densification: there is also a large redistribution of the T-O-T (T = Si, Al) bond angles with the pressure and noticeably upon initial compression in rhyolitic and basaltic liquids. Furthermore, a detailed analysis of the population of bridging oxygens (BO) and nonbridging oxygens (NBO) points out that the polymerization of the melt generally increases when the pressure increases, the magnitude of this polymerization enhancement being all the more important that the melt is depolymerized at low pressure. The role of triclusters (threefold coordinated oxygens to network former cations) is particularly emphasized in acidic and basaltic liquids. The pressure-induced redistribution of the oxygen atoms through the melt structure is also stressed. Finally, the simulation predicts a nonmonotonic behavior of the diffusivity of network former ions when the pressure increases, a feature with depends on the melt composition. This could have a counterpart in the electrical conductivity at sufficiently high temperature when the viscosity of the liquid is low.  相似文献   
650.
Ocean feedback to tropical cyclones: climatology and processes   总被引:1,自引:0,他引:1  
This study presents the first multidecadal and coupled regional simulation of cyclonic activity in the South Pacific. The long-term integration of state-of the art models provides reliable statistics, missing in usual event studies, of air–sea coupling processes controlling tropical cyclone (TC) intensity. The coupling effect is analyzed through comparison of the coupled model with a companion forced experiment. Cyclogenesis patterns in the coupled model are closer to observations with reduced cyclogenesis in the Coral Sea. This provides novel evidence of air–sea coupling impacting not only intensity but also spatial cyclogenesis distribution. Storm-induced cooling and consequent negative feedback is stronger for regions of shallow mixed layers and thin or absent barrier layers as in the Coral Sea. The statistical effect of oceanic mesoscale eddies on TC intensity (crossing over them 20 % of the time) is also evidenced. Anticyclonic eddies provide an insulating effect against storm-induced upwelling and mixing and appear to reduce sea surface temperature (SST) cooling. Cyclonic eddies on the contrary tend to promote strong cooling, particularly through storm-induced upwelling. Air–sea coupling is shown to have a significant role on the intensification process but the sensitivity of TCs to SST cooling is nonlinear and generally lower than predicted by thermodynamic theories: about 15 rather than over 30 hPa °C?1 and only for strong cooling. The reason is that the cooling effect is not instantaneous but accumulated over time within the TC inner-core. These results thus contradict the classical evaporation-wind feedback process as being essential to intensification and rather emphasize the role of macro-scale dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号