首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   647篇
  免费   25篇
  国内免费   10篇
测绘学   17篇
大气科学   51篇
地球物理   143篇
地质学   270篇
海洋学   69篇
天文学   82篇
综合类   2篇
自然地理   48篇
  2023年   3篇
  2022年   6篇
  2021年   12篇
  2020年   14篇
  2019年   15篇
  2018年   22篇
  2017年   27篇
  2016年   28篇
  2015年   35篇
  2014年   33篇
  2013年   41篇
  2012年   33篇
  2011年   43篇
  2010年   55篇
  2009年   52篇
  2008年   38篇
  2007年   50篇
  2006年   28篇
  2005年   27篇
  2004年   24篇
  2003年   13篇
  2002年   10篇
  2001年   4篇
  2000年   8篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   7篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   3篇
  1959年   1篇
  1952年   1篇
排序方式: 共有682条查询结果,搜索用时 0 毫秒
291.
This paper addresses the use of radar remote sensing to map forest above-ground biomass, and discusses the use of biomass maps to test a dynamic vegetation model that identifies carbon sources and sinks and predicts their variation over time. For current radar satellite data, only the biomass of young/sparse forests or regrowth after disturbances can be recovered. An example from central Siberia illustrates that biomass can be measured by radar at a continental scale, and that a significant proportion of the Siberian forests have biomass values less than 50 tonnes/ha. Comparison between the radar map and calculations by the Sheffield Dynamic Global Vegetation Model (SDGVM) indicates that the model considerably overestimates biomass; under-representation of managed areas, disturbed areas and areas of low site quality in the model are suggested reasons for this effect. A case study carried out at the Büdingen plantation forest in Germany supports the argument that inadequate representations of site quality and forest management may cause model overestimates of biomass. Comparison of the calculated biomass of stands planted after 1990 with biomass estimates by radar allows identification of forest stands where the growth conditions assumed by the model are not valid. This allows a quality check on model calculations of carbon fluxes: only calculations for stands where there is good agreement between the data and the model predictions should be accepted. Although the paper only uses the SDGVM model, similar effects are likely in other dynamic vegetation models, and the results show that model calculations attempting to quantify the role of forests as carbon sources or sinks could be qualified and potentially improved by exploiting remotely sensed measurements of biomass.  相似文献   
292.
The Monteville spherule layer (MSL) was deposited in the Griqualand West Basin (GWB) on the Kaapvaal Craton approximately 2.63 Ga. The spherules were generated by a large impact and reworked by impact‐generated waves and/or currents. The MSL has been intersected in three previously undescribed cores. Two of the cores, GKF‐1 and GKP‐1, were drilled ~30 km west of the southernmost outcrop of the MSL. The third core, BH‐47, was drilled ~250 km south and east of the GWB. The MSL contains medium to coarse sand‐size spherules like those described previously in all three cores but each one was emplaced in a different way. In GKF‐1, the MSL is 90 cm thick and contains large rip‐up clasts of basinal carbonate and early diagenetic pyrite. In GKP‐1, the MSL is only 1.5 cm thick and consists largely of fine carbonate sand, yet it contains pyrite intraclasts up to ~1 cm long. In BH‐47, the MSL consists of a lower coarse sandy zone ~37 cm thick rich in spherules, carbonate peloids/ooids, pyrite intraclasts, and quartzose sand and an upper, finer sandy zone ~46 cm thick; neither zone contains any large intraclasts. The new occurrences triple the known extent of the MSL from ~15,000 to ~46,000 km2, support the oceanic impact model for the formation of the MSL, demonstrate that it is a persistent regional time‐stratigraphic marker, place new constraints on the Kaapvaal paleoshoreline at the time of impact, and support the existence of Vaalbara.  相似文献   
293.
Mercury is observed in a stable Cassini’s state, close to a 3:2 spin-orbit resonance, and a 1:1 node resonance. This present situation is not the only possible mathematical stable state, as it is shown here through a simple model limited to the second-order in harmonics and where Mercury is considered as a rigid body. In this framework, using a Hamiltonian formalism, four different sets of resonant angles are computed from the differential Hamiltonian equations, and each of them corresponds to four values of the obliquity; thanks to the calculation of the corresponding eigenvalues, their linear stability is analyzed. In this simplified model, two equilibria (one of which corresponding to the present state of Mercury) are stable, one is unstable, and the fourth one is degenerate. This degenerate status disappears with the introduction of the orbit (node and pericenter) precessions. The influence of these precession rates on the proper frequencies of the rotation is also analyzed and quantified, for different planetary models.  相似文献   
294.
Seabeam, seismic and submersible surveys took place during the Kaiko Project and revealed significant compressive deformation at the northeastern end of the Philippine Sea plate, related to the recent collision of the Izu-Ogasawara Arc against Central Japan. Intraoceanic thrusting at the base of the Zenisu Ridge, a linear topographic high running a few tens of kilometers south of the Nankai Trough, is supported by tectonic, magnetic and gravimetric data. We investigate the formation of the Zenisu Ridge in terms of compressive mechanical failure of a thin elastic-perfectly plastic plate, subducting at a trench and subject to a regional compressive axial force. The rheological envelope concept is used throughout the numerical calculations. Based on a detailed study of flexure of the present-day bending far from the deformation zone, we evaluate the bending forces involved: the bulge is 120 to 150 m high and the compressive stress all along the Nankai Trough is about −100 MPa. In the Zenisu Ridge area, an additional compressive stress is superimposed due to the nearby collision at Izu-Peninsula. We compute the vertical distribution of the deviatoric stress before failure and find that the deviatoric stress is maximum at a depth of 20–25 km in the trench area, and again at the surface 60 to 100 km seaward, in the vicinity of the bulge. The development of a thrust joining these two maxima through the entire thickness of the lithosphere is discussed. The model predicts that the formation of the Zenisu Ridge did not occur before 4 Ma and is caused by progressive tectonic uplift due to the redistribution of bending stresses as the ridge approaches the Nankai Trough.  相似文献   
295.
Abstract— Iron meteorites show resolvable Fe and Ni isotopic fractionation between taenite and kamacite. For Toluca (IAB), the isotopic fractionations between the two phases are around +0.1‰/amu for Fe and ?0.4‰/amu for Ni. These variations may be due to i) equilibrium fractionation, ii) differences in the diffusivities of the different isotopes, or iii) a combination of both processes. A computer algorithm was developed in order to follow the growth of kamacite out of taenite during the formation of the Widmanstätten pattern as well as calculate the fractionation of Fe and Ni isotopes for a set of cooling rates ranging from 25 to 500 °C/Myr. Using a relative difference in diffusion coefficients of adjacent isotopes of 4‰/amu for Fe and Ni (β = 0.25), the observations made in Toluca can be reproduced for a cooling rate of 50 °C/Myr. This value agrees with earlier cooling rate estimates based on Ni concentration profiles. This supports the idea that the fractionation measured for Fe and Ni in iron meteorites is driven by differences in diffusivities of isotopes. It also supports the validity of the value of 0.25 adopted for β for diffusion of Fe and Ni in Fe‐Ni alloy in the temperature range of 400–700 °C.  相似文献   
296.
Decades of runoff from precious-metal mining operations in the Lake Coeur d’Alene Basin, Idaho, have left the sediments in this lake heavily enriched with toxic metals, most notably Zn, Pb and Cu, together with As. The bioavailability, fate and transport of these metals in the sediments are governed by complex biogeochemical processes. In particular, indigenous microbes are capable of catalyzing reactions that detoxify their environments, and thus constitute an important driving component in the biogeochemical cycling of these metals. Here, the development of a quantitative model to evaluate the transport and fate of Zn, Pb and Cu in Lake Coeur d’Alene sediments is reported. The current focus is on the investigation and understanding of local-scale processes, rather than the larger-scale dynamics of sedimentation and diagenesis, with particular emphasis on metal transport through reductive dissolution of Fe hydroxides. The model includes 1-D inorganic diffusive transport coupled to a biotic reaction network including consortium biodegradation kinetics with multiple terminal electron acceptors and syntrophic consortium biotransformation dynamics of redox front. The model captures the mobilization of metals initially sorbed onto hydrous ferric oxides, through bacterial reduction of Fe(III) near the top of the sediment column, coupled with the precipitation of metal sulfides at depth due to biogenic sulfide production. Key chemical reactions involve the dissolution of ferrihydrite and precipitation of siderite and Fe sulfide. The relative rates of these reactions play an important role in the evolution of the sediment pore-water chemistry, notably pH, and directly depend on the relative activity of Fe and SO4 reducers. The model captures fairly well the observed trends of increased alkalinity, sulfide, Fe and heavy metal concentrations below the sediment–water interface, together with decreasing terminal electron acceptor concentrations with depth, including the development of anoxic conditions within about a centimeter below the lake bottom. This effort provides insights on important biogeochemical processes affecting the cycling of metals in Lake Coeur d’Alene and similar metal-impacted lacustrine environments.  相似文献   
297.
As the water concentration in magma decreases during magma ascent, olivine-hosted melt inclusions will reequilibrate with the host magma through hydrogen diffusion in olivine. Previous models showed that for a single spherical melt inclusion in the center of a spherical olivine, the rate of diffusive reequilibration depends on the partition coefficient and diffusivity of hydrogen in olivine, the radius of the melt inclusion, and the radius of the olivine. This process occurs within a few hours and must be considered when interpreting water concentration in olivine-hosted melt inclusions. A correlation is expected between water concentration and melt inclusion radius, because small melt inclusions are more rapidly reequilibrated than large ones when the other conditions are the same. This study investigates the effect of diffusive water loss in natural samples by exploring such a correlation between water concentration and melt inclusion radius, and shows that the correlation can be used to infer the initial water concentration and magma ascent rate. Raman and Fourier transform infrared spectroscopy measurements show that 31 melt inclusions (3.6–63.9 μm in radius) in six olivines from la Sommata, Vulcano Island, Aeolian Islands, have 0.93–5.28 wt% water, and the host glass has 0.17 wt% water. The water concentration in the melt inclusions shows larger variation than the data in previous studies (1.8–4.52 wt%). It correlates positively with the melt inclusion radius, but does not correlate with the major element concentrations in the melt inclusions, which is consistent with the hypothesis that the water concentration has been affected by diffusive water loss. In a simplified hypothetical scenario of magma ascent, the initial water concentration and magma ascent rate are inferred by numerical modeling of the diffusive water loss process. The melt inclusions in each olivine are assumed to have the same initial water concentration and magma ascent rate. The melt inclusions are assumed to be quenched after eruption (i.e., the diffusive water loss after eruption is not considered). The model results show that the melt inclusions initially had 3.9–5.9 wt% water and ascended at 0.002–0.021 MPa/s before eruption. The overall range of ascent rate is close to the lower limit of previous estimates on the ascent rate of basalts.  相似文献   
298.
The smectite-to-chlorite conversion is investigated through long-duration experiments (up to 9 years) conducted at 300 °C. The starting products were the Wyoming bentonite MX80 (79 % smectite), metallic iron and magnetite in contact with a Na–Ca chloride solution. The predominant minerals in the run products were an iron-rich chlorite (chamosite like) and interstratified clays interpreted to be chlorite/smectite and/or corrensite/smectite, accompanied by euhedral crystals of quartz, albite and zeolite. The formation of pure corrensite was not observed in the long-duration experiments. The conversion of smectite into chlorite over time appears to take place in several steps and through several successive mechanisms: a solid-state transformation, significant dissolution of the smectite and direct precipitation from the solution, which is over-saturated with respect to chlorite, allowing the formation of a chamosite-like mineral. The reaction mechanisms are confirmed by X-ray patterns and data obtained on the experimental solutions (pH, contents of Si, Mg, Na and Ca). Because of the availability of some nutrients in the solution, total dissolution of the starting smectite does not lead to 100 % crystallization of chlorite but to a mixture of two dominant clays: chamosite and interstratified chlorite/smectite and/or corrensite/smectite poor in smectite. The role of Fe/(Fe + Mg) in the experimental medium is highlighted by chemical data obtained on newly formed clay particles alongside previously published data. The newly formed iron-rich chlorite has the same composition as that predicted by the geothermometer for diagenetic to low-grade metamorphic conditions, and the quartz + Fe-chlorite + albite experimental assemblage in the 9-year experiment is close to that fixed by water–rock equilibrium.  相似文献   
299.
Performance studies of a microscope‐camera system (MCS) and a laser ablation/ionisation mass spectrometer (LIMS) instrument (referred to here as a laser mass spectrometer or LMS) are presented. These two instruments were designed independently for in situ analysis of solids on planetary surfaces and will be combined to a single miniature instrument suite for in situ chemical and morphological analysis of surface materials on planetary bodies. LMS can perform sensitive chemical (elemental, isotope and molecular) analyses with spatial resolution close to micrometre‐sized grains. It allows for studies with mass resolution (MM) up to 800 in ablation mode (elemental composition) and up to 1500 in desorption mode (molecular analysis). With an effective dynamic range of at least eight orders of magnitude, sensitive and quantitative measurements can be conducted of almost all elements and isotopes with a concentration larger than a few ppb atoms. Hence, in addition to the major element composition, which is important for the determination of mineralogical constituents of surface materials, trace elements can also be measured to provide information on mineral formation processes. Highly accurate isotope ratio measurements can be used to determine in situ geochronology of sample material and for investigations of various isotope fractionation processes. MCS can conduct optical imagery of mm‐sized objects at several wavelengths with micrometre spatial resolution for the characterisation of morphological surface details and to provide insight into surface mineralogy. Furthermore, MCS can help in the selection of sample surface areas for further mass spectrometric analysis of the chemical composition. Surface auto‐fluorescence measurements and images in polarised light are additional capabilities of the MCS, to identify either fluorescing minerals or organic materials, if present on the analysed surface, for further investigation by LMS. The results obtained by investigations of NIST reference materials, amino acid films and a natural graphite sample embedded in silicate rock are presented to illustrate the performance of the instruments and their potential to deliver chemical information for mineral and organic phases in their geological context.  相似文献   
300.
In this paper, we publish the results of a bathymetry survey based on the processing of satellite altimetry data. Data gathered from GEOSAT (Geodetic Mission), SEASAT, ERS-1 and TOPEX/POSEIDON satellites were processed to recover the seafloor topography over new seamounts in a test area located in the south central Pacific. We show that by processing high-density satellite altimetry data, alone or in combination with shiptrack bathymetric data, it is possible to produce full coverage bathymetric maps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号