首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   663篇
  免费   25篇
  国内免费   10篇
测绘学   17篇
大气科学   52篇
地球物理   148篇
地质学   275篇
海洋学   69篇
天文学   87篇
综合类   2篇
自然地理   48篇
  2023年   3篇
  2022年   6篇
  2021年   12篇
  2020年   14篇
  2019年   15篇
  2018年   22篇
  2017年   29篇
  2016年   28篇
  2015年   35篇
  2014年   33篇
  2013年   42篇
  2012年   35篇
  2011年   45篇
  2010年   56篇
  2009年   53篇
  2008年   39篇
  2007年   50篇
  2006年   28篇
  2005年   27篇
  2004年   26篇
  2003年   16篇
  2002年   10篇
  2001年   4篇
  2000年   8篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   7篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   3篇
  1959年   1篇
  1952年   1篇
排序方式: 共有698条查询结果,搜索用时 15 毫秒
71.
The Sheep Mountain‐Little Sheep Mountain Anticlines, Bighorn Basin (USA) formed as basement‐cored Laramide structures in the formerly undeformed foreland of the thin‐skinned Sevier orogen. We take advantage of the well‐constrained microstructural network there to reconstruct differential stress magnitudes that prevailed during both Sevier and Laramide layer‐parallel shortening (LPS), before the onset of large‐scale folding. Differential stress magnitudes determined from tectonic stylolites are compared and combined to previous stress estimates from calcite twinning paleopiezometry in the same formations. During stress loading related to LPS, differential stress magnitudes transmitted from the distant Sevier thin‐skinned orogen into the sedimentary cover of the Bighorn basin (11–43 MPa) are higher than the differential stress magnitudes accompanying the early stage of LPS related to the thick‐skinned Laramide deformation (2–19 MPa). This study illustrates that the tectonic style of an orogen affects the transmission of early orogenic stress into the stable continental interior.  相似文献   
72.
Rivers respond to a drop in their base level by incising the topography. The upstream propagation of an incision, as usually depicted by a knickpoint migration, is thought to depend on several parameters such as the drainage area, lithology, and the amplitude of the base level drop. We first investigate the case of the Messinian Salinity Crisis that was characterized by the extreme base level fall (1500 m) of the Mediterranean Sea at the end of the Miocene. The response of drainage areas of three orders of magnitude (103 to 106 km2) highlights the dominant role of the drainage area (with a square root relationship) in controlling the knickpoint migration after a base level fall. A compilation of mean rates of knickpoint propagation for time durations ranging from 102 to 107 years displays a similar relationship indicating that successive wave trains of knickpoint can migrate in a river: first, wave trains linked to the release of the alluvial cover and then, wave trains related to the bedrock incision, which correspond to the real time response of rivers. Wave trains with very low retreat rates (long lived knickpoints > 1 My) rather correspond to the response time of regional landscape.  相似文献   
73.
Instrumental climate records from the central Canadian treeline zone display a pattern of variation similar to general Northern Hemisphere temperature trends. To examine whether this general correspondence extends back beyond the instrumental record, we obtained a sediment core from Lake S41, a small lake in the Northwest Territories of Canada at 63°43.11′ N, 109°19.07′ W. A radiocarbon-based chronology was developed for the core. The sediments were analyzed for organic-matter content by loss-on-ignition (LOI), biogenic-silica content (BSi), and chironomid community composition to reconstruct July air temperature and summer water temperature. The paleolimnological records were compared with records of atmospheric CO2 concentration, solar variability, and hemispheric temperature variations over the past 2000 years. The results of the analyses suggest that widely-documented long-term variations in Northern Hemisphere temperature associated with radiative forcing, namely the cooling following the medieval period during the Little Ice Age (LIA), and twentieth century warming, are represented in the central Canadian treeline zone. There is also evidence of a brief episode of warming during the eighteenth century. As evidenced by LOI and BSi, the twentieth century warming is typified by increased lake productivity relative to the LIA. Depending upon the measure, the increased productivity of the twentieth century nearly equals or exceeds that of any other period in the past 2000 years. In contrast, the rate of chironomid head capsule accumulation decreased and remained low during the twentieth century. Although the chironomid-inferred temperature reconstructions indicate cooling during the LIA, they present no evidence of greatly increased temperatures during the twentieth century. Warming during the twentieth century might have enhanced lake stratification, and the response of the chironomid fauna to warming was attenuated by decreased oxygen and lower temperatures in the hypolimnion of the more stratification-prone lake.
Glen M. MacDonaldEmail:
  相似文献   
74.
Durand  Fabien  Alory  Ga&#;l  Dussin  Rapha&#;l  Reul  Nicolas 《Ocean Dynamics》2013,63(11):1203-1212

The tropical Indian Ocean experiences an interannual mode of climatic variability, known as the Indian Ocean Dipole (IOD). The signature of this variability in ocean salinity is hypothesized based on modeling and assimilation studies, on account of scanty observations. Soil Moisture and Ocean Salinity (SMOS) satellite has been designed to take up the challenge of sea surface salinity remote sensing. We show that SMOS data can be used to infer the pattern of salinity variability linked with the IOD events. The core of maximum variability is located in the central tropical basin, south of the equator. This region is anomalously salty during the 2010 negative IOD event, and anomalously fresh during the 2011 positive IOD event. The peak-to-peak anomaly exceeds one salinity unit, between late 2010 and late 2011. In conjunction with other observational datasets, SMOS data allow us to draw the salt budget of the area. It turns out that the horizontal advection is the main driver of salinity anomalies. This finding is confirmed by the analysis of the outputs of a numerical model. This study shows that the advent of SMOS makes it feasible the quantitative assessment of the mechanisms of ocean surface salinity variability in the tropical basins, at interannual timescales.

  相似文献   
75.
Long-term experimental watershed studies have significantly influenced our global understanding of hydrological processes. The discovery and characterization of how stream water quantity and quality respond to a changing environment (e.g. land-use change, acidic deposition) has only been possible due to the establishment of catchments devoted to long-term study. One such catchment is the Fernow Experimental Forest (FEF) located in the headwaters of the Appalachian Mountains in West Virginia, a region that provides essential freshwater ecosystem services to eastern and mid-western United States communities. Established in 1934, the FEF is among the earliest experimental watershed studies in the Eastern United States that continues to address emergent challenges to forest ecosystems, including climate change and other threats to forest health. This data note describes available data and presents some findings from more than 50 years of hydrologic research at the FEF. During the first few decades, research at the FEF focused on the relationship between forest management and hydrological processes—especially those related to the overall water balance. Later, research included the examination of interactions between hydrology and soil erosion, biogeochemistry, N-saturation, and acid deposition. Hydro-climatologic and water quality datasets from long-term measurements and data from short-duration studies are publicly available to provide new insights and foster collaborations that will continue to advance our understanding of hydrology in forested headwater catchments. As a result of its rich history of research and abundance of long-term data, the FEF is positioned to continue to advance understanding of forest ecosystems in a time of unprecedented change.  相似文献   
76.
Although the structure of the central Peruvian Subandean zone is well defined, the timing of thrust‐related exhumation and Cenozoic sedimentation remain poorly constrained. In this study, we report new apatite (U–Th)/He (AHe) and fission track (AFT) ages from thrust‐belt and foreland strata along three published balanced cross sections. AHe data from the northern, thick‐skinned domain (i.e. Shira Mountain, Otishi Cordillera and Ucayali Basin) show young AHe ages (ranging from 2.6 ± 0.2 to 13.1 ± 0.8 Ma) compared with AFT ages (ranging from 101 ± 5 to 133 ± 11 Ma). In the southern Camisea Basin, where deformation is mainly thin‐skinned, AHe and AFT ages have been both reset and show young cooling ages (3.7 ± 0.8 Ma and 8 ± 2 Ma respectively). Using low‐temperature thermochronology data and the latest fission track annealing and He diffusion codes, the thermal history of the study area has been reconstructed using inverse modelling. This history includes two steps of erosion: Early Cretaceous and late Neogene, but only Neogene sedimentation and exhumation varies in the different sectors of the study area. From a methodological point of view, large AHe data dispersion point to the need for refinement of AHe damage and annealing models. The influence of grain chemistry on damage annealing, multiple age components and the possibility of fission tracks as traps for He need further consideration. For the central Peruvian Subandes, AHe and AFT ages combined with balanced cross sections emphasize the dominant control of Paleozoic inheritance rather than climate on Cenozoic infilling and exhumation histories. Finally, our data provide the first field example of how thick‐skinned thrust‐related deformation and exhumation in the Subandes can be directly dated through AHe thermochronology.  相似文献   
77.
We measured spatial and temporal variations in carbon concentrations, isotopic compositions and exports during a complete hydrological cycle in nine watercourses draining a lowland forested podzolized catchment, flowing into the Arcachon lagoon (France). In addition, integrated fluxes of CO2 across the water-atmosphere interface were estimated to assess the relative importance of CO2 evasion versus lateral carbon transport at the catchment scale. Watercourse similarities and specificities linked to the local catchment characteristics are discussed and compared with other riverine systems. Low concentrations of suspended particulate matter and particulate organic carbon (POC) were generally measured in all the watercourses (8.4 ± 3.4 and 1.6 ± 0.6 mg L?1, respectively), reflecting limited mechanical soil erosion. The generally high POC content in the suspended matter (20 %), low Chl a concentrations (1.3 ± 1.4 μg L?1) and the relatively constant δ13C-POC value (near ?28 ‰) throughout the year reveal this POC originates from terrestrial C3 plant and soil detritus. The presence of podzols leads to high levels of dissolved organic carbon (DOC; 6.6 ± 2.2 mg L?1). Similarly, high dissolved inorganic carbon (DIC) concentrations were measured in the Arcachon lagoon catchment (5.9 ± 2.2 mg L?1). The δ13C-DIC value around ?20 ‰ throughout the year in many small watercourses reveals the predominance of terrestrial carbon mineralisation and silicate rock weathering in soils as the major DIC source. With pCO2 between 1,000 and 10,000 ppmv, all watercourses were a source of CO2 to the atmosphere, particularly during the low river stage. Organic carbon parameters remained relatively stable throughout the year, whereas DIC parameters showed strong seasonal contrasts closely linked to the hydrological regime and hyporheic flows. In total, the carbon export from the Arcachon watershed was estimated at 15,870 t C year?1 or 6 t C km?2 year?1, mostly exported to the lagoon as DOC (35 %), DIC (24 %) and lost as CO2 degassing to the atmosphere (34 %).  相似文献   
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号