首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24670篇
  免费   195篇
  国内免费   923篇
测绘学   1414篇
大气科学   2002篇
地球物理   4589篇
地质学   11689篇
海洋学   1028篇
天文学   1665篇
综合类   2162篇
自然地理   1239篇
  2024年   2篇
  2023年   2篇
  2022年   4篇
  2021年   8篇
  2020年   7篇
  2019年   7篇
  2018年   4771篇
  2017年   4046篇
  2016年   2595篇
  2015年   248篇
  2014年   103篇
  2013年   44篇
  2012年   1001篇
  2011年   2740篇
  2010年   2031篇
  2009年   2334篇
  2008年   1901篇
  2007年   2376篇
  2006年   60篇
  2005年   209篇
  2004年   418篇
  2003年   419篇
  2002年   256篇
  2001年   49篇
  2000年   54篇
  1999年   14篇
  1998年   22篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1990年   1篇
  1989年   2篇
  1985年   3篇
  1981年   22篇
  1980年   19篇
  1977年   1篇
  1976年   6篇
  1970年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
Two large-scale “in situ” demonstration experiments and their instrumentation are described. The first test (FEBEX Experiment) involves the hydration of a compacted bentonite barrier under the combined effect of an inner source of heat and an outer water flow from the confining saturated granite rock. In the second case, the progressive de-saturation of Opalinus clay induced by maintained ventilation of an unlined tunnel is analyzed. The paper shows the performance of different sensors (capacitive cells, psychrometers, TDR’s) and a comparison of fill behaviour with modelling results. The long term performance of some instruments could also be evaluated specially in the case of FEBEX test. Capacitive sensors provide relative humidity data during long transient periods characterised by very large variations of suction within the bentonite.  相似文献   
132.
Bathymetric, 9.5-kHz long-range sidescan sonar (OKEAN), seismic reflection and sediment-core data are used in the analysis of two tectonic troughs south of Crete, Eastern Mediterranean Sea. Here, up to 1.2 s two-way travel time (TWTT) of strata have accumulated since the Middle Miocene in association with extension in the South Aegean region. The study area comprises >100-km- long by >25-km-wide basins filled by sediments subdivided into two seismic units: (1) an upper Unit 1 deposited in sub-basins which follow the present-day configuration of the southern Cretan margin; (2) a basal Unit 2, more than 500 ms (TWTT) thick, accumulated in deeper half-graben/grabens distinct from the present-day depocentres. Both units overlap a locally stratified Unit 3 comprising the pre-Neogene core complex of Crete and Gavdos. In this work, the interpreted seismic units are correlated with the onshore stratigraphy, demonstrating that denudation processes occurring on Crete and Gavdos in response to major tectonic events have been responsible for high sedimentation rates along the proximal southern Cretan margin. Consequently, topographically confined sedimentary units have been deposited south of Crete in the last 12 Ma, including turbidites and other mass-flow deposits fed by evolving transverse and axial channel systems. Surface processes controlling facies distribution include the direct inflow of sediment from alluvial-fan systems and incising mountain rivers onto the Cretan slope, where significant sediment instability processes occur at present. In this setting, seismic profiles reveal eight different types of stratigraphic contacts on basin-margin highs, and basinal areas show evidence of halokinesis and/or fluid escape. The acquired data also show that significant changes to the margin’s configuration occurred in association with the post-Alpine tectonic and eustatic episodes affecting the Eastern Mediterranean.  相似文献   
133.
This paper examines the mechanism controlling the short time-scale variation of sea ice cover over the Southern Ocean. Sea ice concentration and ice velocity datasets derived from images of the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) are employed to reveal this mechanism. The contribution of both dynamic and thermodynamic processes to the change in ice edge location is examined by comparing the meridional velocity of ice edge displacement and sea ice drift. In the winter expansion phase, the thermodynamic process of new ice production off the ice edge plays an important role in daily advances of ice cover, whereas daily retreats are mostly due to southward ice drift. On the other hand, both advance and retreat of ice edges in the spring contraction phase are mostly caused by the dynamic process of the ice drift. Based on the above mechanism and the linear relation between the degree of ice production at the ice edge and northward wind speed, the seasonal advance of ice cover can be roughly reproduced using the meridional velocity of ice drift at the ice edge.  相似文献   
134.
Two distinct series of slumps deform the upper part of the sedimentary sequence along the continental margin of the Levant. One series is found along the base of the continental slope, where it overlies the disrupted eastern edge of the Messinian evaporites. The second series of slumps transects the continental margin from the shelf break to the Levant Basin. It seemed that the two series were triggered by two unrelated, though contemporaneous, processes. The shore-parallel slumps were initiated by basinwards flow of the Messinian salt, that carried along the overlying Plio-Quaternary sediments. Seawater that percolated along the detachment faults dissolved the underlying salt to form distinctly disrupted structures. The slope-normal slumps are located on top of large canyons that cut into the pre-Messinian sedimentary rocks. A layer of salt is found in the canyons, and the Plio-Quaternary sediments were deposited on that layer. The slumps are bounded by large, NW-trending faults where post-Messinian faulted offset was measured. We presume that the flow of the salt in the canyons also drives the slope-normal slumps. Thus thin-skinned halokynetic processes generated the composite post-Tortonian structural patterns of the Levant margin. The Phoenician Structures are a prime example of the collapse of a distal continental margin due to the dissolution of a massive salt layer.  相似文献   
135.
This study aimed to contribute to conservation management of reefs of Serpula vermicularis by increasing understanding of the factors influencing larval settlement. The study was carried out in Loch Creran, which supports the most extensive known development of S. vermicularis reefs in the world. Settlement plates were deployed to examine the influence of season, depth, reef density, substrate type and orientation. Monthly deployment of plates revealed settlement of S. vermicularis to occur predominantly from mid-June to mid-October, peaking in late August to early September. Settlement of Pomatoceros spp. peaked much earlier, in late May to early June. Deployment of plates at different depths revealed a marked reduction in S. vermicularis settlement intensity between 6 and 12 m. As this corresponds with the deeper limit of the peripheral fringe of serpulid reefs in the loch, it is suggested that this limit is imposed by a depth-correlated settlement response, rather than reduction in available substrata. Comparisons of various substrata showed a preference by S. vermicularis larvae for a slate over a scallop substrate and no evidence of enhanced recruitment to occupied or unoccupied tubes of S. vermicularis, suggesting that gregarious attraction is unlikely to be a factor causing reef formation. Settlement onto the upper side of a horizontal scallop substrate was found to be insignificant in comparison with the underside or a vertically orientated scallop. Evidence for the role of light in controlling the depth and substrate-orientation preferences of S. vermicularis larvae is discussed. Based on the results of this study, recommendations are made regarding remediation of areas suffering reef damage.  相似文献   
136.
137.
Seasonal evolution of surface mixed layer in the Northern Arabian Sea (NAS) between 17° N–20.5° N and 59° E-69° E was observed by using Argo float daily data for about 9 months, from April 2002 through December 2002. Results showed that during April - May mixed layer shoaled due to light winds, clear sky and intense solar insolation. Sea surface temperature (SST) rose by 2.3 °C and ocean gained an average of 99.8 Wm−2. Mixed layer reached maximum depth of about 71 m during June - September owing to strong winds and cloudy skies. Ocean gained abnormally low ∼18 Wm−2 and SST dropped by 3.4 °C. During the inter monsoon period, October, mixed layer shoaled and maintained a depth of 20 to 30 m. November - December was accompanied by moderate winds, dropping of SST by 1.5 °C and ocean lost an average of 52.5 Wm−2. Mixed layer deepened gradually reaching a maximum of 62 m in December. Analysis of surface fluxes and winds suggested that winds and fluxes are the dominating factors causing deepening of mixed layer during summer and winter monsoon periods respectively. Relatively high correlation between MLD, net heat flux and wind speed revealed that short term variability of MLD coincided well with short term variability of surface forcing.  相似文献   
138.
Mercury speciation and its distribution in surface and deep waters of the Mediterranean Sea were studied during two oceanographic cruises on board the Italian research vessel URANIA in summer 2003 and spring 2004 as part of the Med Oceaneor and MERCYMS projects. The study included deep water profiles of dissolved gaseous Hg (DGM), reactive Hg (RHg), total Hg (THg), monomethyl Hg (MeHg) and dimethyl Hg (DMeHg) in open ocean waters. Average concentrations of measured Hg species were characterized by seasonal and spatial variations. Overall average THg concentrations ranged between 0.41 and 2.65 pM (1.32 ± 0.48 pM) and were comparable to those obtained in previous studies of the Mediterranean Sea. A significant fraction of Hg was present as “reactive” Hg (average 0.33 ± 0.32 pM). Dissolved gaseous Hg (DGM), which consists mainly of Hg0, represents a considerable proportion of THg (average 20%, 0.23 ± 0.11 pM). The portion of DGM typically increased towards the bottom, especially in areas with strong tectonic activity (Alboran Sea, Strait of Sicily, Tyrrhenian Sea), indicating its geotectonic origin. No dimethyl Hg was found in surface waters down to the depth of 40 m. Below this depth, its average concentration was 2.67 ± 2.9 fM. Dissolved fractions of total Hg and MeHg were measured in filtered water samples and were 0.68 ± 0.43 pM and 0.29 ± 0.17 pM for THg and MeHg respectively. The fraction of Hg as MeHg was in average 43%, which is relatively high compared to other ocean environments. The concentrations reported in this study are among the lowest found in marine environments and the quality of analytical methods are of key importance. Speciation of Hg in sea water is of crucial importance as THg concentrations alone do not give adequate data for understanding Hg sources and cycling in marine environments. For example, photoinduced transformations are important for the presence of reactive and elemental mercury in the surface layers, biologically mediated reactions are important for the production/degradation of MeHg and DGM in the photic zones of the water column, and the data for DGM in deep sea indicate the natural sources of Hg in geotectonicaly active areas of the Mediterranean Sea.  相似文献   
139.
Spatial and Temporal Variations of Sound Speed at the PN Section   总被引:3,自引:0,他引:3  
Gridded sound speed data were calculated using Del Grosso's formulation from the temperature and salinity data at the PN section in the East China Sea covering 92 cruises between February 1978 and October 2000. The vertical gradients of sound speed are mainly related to the seasonal variations, and the strong horizontal gradients are mainly related to the Kuroshio and the upwelling. The standard deviations show that great variations of sound speed exist in the upper layer and in the slope zone. Empirical orthogonal function analysis shows that contributions of surface heating and the Kuroshio to sound speed variance are almost equivalent. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
140.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号