首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   739篇
  免费   61篇
  国内免费   12篇
测绘学   36篇
大气科学   52篇
地球物理   185篇
地质学   269篇
海洋学   74篇
天文学   110篇
综合类   2篇
自然地理   84篇
  2023年   2篇
  2022年   2篇
  2021年   21篇
  2020年   18篇
  2019年   25篇
  2018年   31篇
  2017年   28篇
  2016年   34篇
  2015年   28篇
  2014年   39篇
  2013年   69篇
  2012年   38篇
  2011年   30篇
  2010年   30篇
  2009年   41篇
  2008年   32篇
  2007年   38篇
  2006年   28篇
  2005年   31篇
  2004年   34篇
  2003年   18篇
  2002年   23篇
  2001年   17篇
  2000年   14篇
  1999年   13篇
  1998年   9篇
  1997年   9篇
  1996年   6篇
  1995年   7篇
  1994年   8篇
  1993年   5篇
  1992年   3篇
  1991年   10篇
  1990年   5篇
  1989年   8篇
  1988年   2篇
  1987年   2篇
  1986年   5篇
  1985年   7篇
  1984年   8篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1978年   2篇
  1977年   4篇
  1973年   2篇
  1972年   2篇
  1967年   2篇
  1966年   3篇
排序方式: 共有812条查询结果,搜索用时 31 毫秒
131.
Processes that drive the occurrence of nitrate concentrations in surface waters are known to operate over many decades longer than the available observations. This study considers the world's longest water quality record of nitrate concentrations in the River Thames (1868–2009) in order to understand whether the nature of the time series has changed with time and such external drivers as climate change and land use of hydrology. The study considers the linear trend, the seasonality, the memory and the impulsivity relative to river flow of the time series for moving windows of 6 years in length. The study can show that:
132.
The distribution of particulate matter within river channels, including sediments, nutrients and pollutants, is fundamental to the survival of aquatic organisms. However, the interactions between flow and sediment transport at the patch scale of river systems represents an under‐researched component of physical habitat studies, particularly those concerning the characterization of ‘physical biotopes’ (riffles, runs, pools, glides). This paper describes a field methodology for exploring the transfer of particulate matter at small scales within river channels, which may be used to aid hydraulic habitat characterization. The field protocol combines field measurement of high frequency flow properties, to characterize hydraulic habitat units, and deployment of spatial arrays of turbidity probes, to detect the passage of artificially‐induced sediment plumes through different biotope units. Sediment plumes recorded by the probes are analysed quantitatively in the manner of the flood hydrograph, and qualitative inferences are made on the dominant mixing processes operating within different parts of the channel. Relationships between the nature of spatio‐temporal hydraulic variations within glide, riffle and pool biotopes, and the character and mixing behaviour of sediment plumes within these habitat units are identified. Results from these preliminary experiments suggest that investigating and characterizing the transfer and storage of sediments, nutrients and pollutants within and between different biotopes is a viable avenue for further research, with potential to contribute to improved physical habitat characterization for river management and habitat restoration. The experiments are also an illustration of the value of neglected synergies between process geomorphology, ecology and river hydraulics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
133.
Soil erosion has been identified as a potential global carbon sink since eroded organic matter is replaced at source and eroded material is readily buried. However, this argument has relied on poor estimates of the total fate of in‐transit particulates and could erroneously imply soil erosion could be encouraged to generate carbon stores. These previous estimates have not considered that organic matter can also be released to the atmosphere as a range of greenhouse gases, not only carbon dioxide (CO2), but also the more powerful greenhouse gases methane (CH4) and nitrous oxide (N2O). As soil carbon lost by erosion is only replaced by uptake of CO2, this could represent a considerable imbalance in greenhouse gas warming potential, even if it is not significant in terms of overall carbon flux. This work therefore considers the flux of particulate organic matter through UK rivers with respect to both carbon fluxes and greenhouse gas emissions. The results show that, although emissions to the atmosphere are dominated by CO2, there are also considerable fluxes of CH4 and N2O. The results suggest that soil erosion is a net source of greenhouse gases with median emission factors of 5.5, 4.4 and 0.3 tonnes CO2eq/yr for one tonne of fluvial carbon, gross carbon erosion and gross soil erosion, respectively. This study concludes that gross soil erosion would therefore only be a net sink of both carbon and greenhouse gases if all the following criteria are met: the gross soil erosion rate were very low (<91 tonnes/km2/yr); the eroded carbon were completely replaced by new soil organic matter; and if less than half of the gross erosion made it into the stream network. By establishing the emission factor for soil erosion, it becomes possible to properly account for the benefits of good soil management in minimizing losses of greenhouse gases to the atmosphere as a by‐product of soil erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
134.
Soil erosion is an important component of the global carbon cycle. However, little attention has been given to the role of aeolian processes in influencing soil organic carbon (SOC) flux and the release of greenhouse gasses, such as carbon dioxide (CO2), to the atmosphere. Understanding the magnitude and mechanisms of SOC enrichment in dust emissions is necessary to evaluate the impact of wind erosion on the carbon cycle. This research examines the SOC content and enrichment of dust emissions measured using Big Spring Number Eight (BSNE) wind‐vane samplers across five land types in the rangelands of western Queensland, Australia. Our results show that sandy soils and finer particulate quartz‐rich soils are more efficient at SOC emission and have larger SOC dust enrichment than clay‐rich aggregated soils. The SOC enrichment ratios of dusts originating from sites with sand‐rich soil ranged from 2·1–41·9, while the mean enrichment ratio for dusts originating from the clay soil was 2·1. We hypothesize that stronger inter‐particle bonds and the low grain density of the aggregated clay soil explain its reduced capacity to release SOC during saltation, relative to the particulate sandy soils. We also show that size‐selective sorting of SOC during transport may lead to further enrichment of SOC dust emissions. Two dust samples from regional transport events were found to contain 15–20% SOC. These preliminary results provide impetus for additional research into dust SOC enrichment processes to elucidate the impact of wind erosion on SOC flux and reduce uncertainty about the role of soil erosion in the global carbon cycle. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
135.
The effect of large roughness elements on sand transport efficiency was evaluated on a coastal sand sheet by measuring sand flux with two types of sand traps [Big Spring Number Eight (BSNE) and the Cox Sand Catcher (CSC)] at 30 positions through a 100 m‐long × 50 m‐wide roughness array comprised of 210 elements each with the dimensions 1·17 m long × 0·4 m high × 0·6 m wide. The 210 elements were used to create a roughness density (λ) of 0·022 (λ = n bh/S, where n is the number of elements, b the element breadth, h the element height, and S is the area of the surface that contains all the elements) in an area of 5000 m2. The mean normalized saltation flux (NSF) values (NSF = outgoing sand flux/incoming sand flux) at the furthest downwind distance for the two trap types were 0·44 and 0·41, respectively. This is in excellent agreement with an empirical model prediction of 0·5. The reduction in saltation flux is similar to an earlier separate study for an equivalent λ composed of elements of similar height (0·36 m), even though the roughness element forms were different (rectangular in this study as opposed to circular) as were the horizontal porosity of the arrays (49% versus 16%). This corroborates earlier results that roughness element height is a critical parameter that enhances reduction in sand transport by wind for similar λ configurations. The available data suggest the form of the relationship between transport reduction efficiency and height is likely a power relationship with two limiting conditions: (1) for elements ≤ 0·1 m high the effect is minimized, and (2) as element height matches and then exceeds the maximum height of the saltation layer (≥ 1 m), the effect will stabilize near a maximum of NSF ≈ 0·32. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
136.
Mylonite textures in granodiorite boulders are responsible for higher rates of surface denudation of host rocks and the progressive development of unusual rock weathering features, termed weathering posts. These textures are characterized by smaller grain sizes, higher biotite content, and a higher biotite axial ratio in host rocks relative to weathering posts. Elemental concentrations do not show a significant difference between weathering posts and the host rocks in which they are found, and this reflects the absence of a weathering residue on the rock surfaces. Chemical weathering loosens the bonds between mineral grains through the expansion of biotite, and the loosened grains fall off or are blown off the boulder surface and continue their chemical alteration in the surrounding soil. The height of weathering posts on late Quaternary moraines increases at a linear rate of ~ 1.45 ± 0.45 cm (1000 yr)? 1 until post heights reach the diameter of host rocks. Such a rate of boulder denudation, if unrecognized, would generate significant errors (> 20%) in cosmogenic exposure ages for Pleistocene moraines. Given the paucity of boulders with diameters that significantly exceed 1.5 m, the maximum age of utility of weathering posts as a numeric age indicator is ~ 100 ka.  相似文献   
137.
In this investigation, four scenarios were used to quantify the balance between the benefits of levees for flood protection and their potential to increase flood risk using Hazards U.S. Multi-Hazard flood-loss software and hydraulic modeling of the Middle Mississippi River (MMR). The goals of this study were (1) to quantify the flood exposure under different flood-control configurations and (2) to assess the relative contributions of various engineered structures and flood-loss strategies to potential flood losses. Removing all the flood-control structures along the MMR, without buyouts or other mitigation, reduced the average flood stages between 2.3 m (100-year flood) and 2.5 m (500-year), but increased the potential flood losses by $4.3–6.7 billion. Removing the agricultural levees downstream of St. Louis decreased the flood stages through the metro region by ~1.0 m for the 100- and 500-year events; flood losses, without buyouts or other mitigation, were increased by $4.3–6.7 billion. Removing the agricultural levees downstream of St. Louis decreased the flood stages through the metro region by ~1.0 m for the 100- and 500-year events; flood losses, without buyouts or other mitigation, were increased by 155 million for the 100-year flood, but were decreased by $109 million for the 500-year flood. Thus, agricultural levees along the MMR protect against small- to medium-size floods (up to the ~100-year flood level) but cause more damage than they prevent during large floods such as the 500-year flood. Buyout costs for the all the buildings within the 500-year floodplain downstream of urban flood-control structures near St. Louis are ~40% less than the cost of repairing the buildings damaged by the 500-year flood. This suggests large-scale buyouts could be the most cost-effective option for flood loss mitigation for properties currently protected by agricultural levees.  相似文献   
138.
The exchange of Na+ and K+ between alkali feldspar and a NaCl–KCl salt melt has been investigated experimentally. Run conditions were at ambient pressure and 850 °C as well as 1,000 °C. Cation exchange occurred by interdiffusion of Na+ and K+ on the feldspar sub-lattice, while the Si–Al framework remained unaffected. Due to the compositional dependence of the lattice parameters compositional heterogeneities resulting from Na+/K+ interdiffusion induced coherency stress and associated fracturing. Depending on the sense of chemical shift, different crack patterns developed. For the geometrically most regular case that developed when potassic alkali feldspar was shifted toward more sodium-rich compositions, a prominent set of cracks corresponding to tension cracks opened perpendicular to the direction of maximum tensile stress and did not follow any of the feldspar cleavage planes. The critical stress needed to initiate fracturing in a general direction of the feldspar lattice was estimated at ≤0.35 GPa. Fracturing provided fast pathways for penetration of salt melt or vapor into grain interiors enhancing overall cation exchange. The Na/K partitioning between feldspar and the salt melt attained equilibrium values in the exchanged portions of the grains allowing for extraction of the alkali feldspar mixing properties.  相似文献   
139.
The Nantianwan mafic intrusion in the Panxi region, SW China, part of the ~260?Ma Emeishan large igneous province, consists of the olivine gabbro and gabbronorite units, separated by a transitional zone. Olivine gabbros contain olivine with Fo values ranging from 83 to 87, indicating crystallization from a moderately evolved magma. They have 0.2 to 0.9?wt?% sulfide with highly variable PGE (17?C151?ppb) and variable Cu/Pd ratios (1,500?C32,500). Modeling results indicate that they were derived from picritic magmas with high initial PGE concentrations. Olivine gabbros have negative ??Nd(t) values (?1.3 to ?0.1) and positive ??Os(t) values (5?C15), consistent with low degrees of crustal contamination. Gabbronorites include sulfide-bearing and sulfide-poor varieties, and both have olivine with Fo values ranging from 74 to 79, indicating crystallization from a more evolved magma than that for olivine gabbros. Sulfide-bearing gabbronorites contain 1.9?C4.1?wt?% sulfide and 37?C160?ppb PGE and high Cu/Pd ratios (54,000?C624,000). Sulfide-poor gabbronorites have 0.1?C0.6?wt?% sulfide and 0.2?C15?ppb PGE and very high Cu/Pd ratios (16,900?C2,370,000). Both sulfide-bearing and sulfide-poor gabbronorites have ??Nd(t) values (?0.9 to ?2.1) similar to those for olivine gabbros, but their ??Os(t) values (17?C262) are much higher and more variable than those of the olivine gabbros. Selective assimilation of crustal sulfides from the country rocks is thus considered to have resulted in more radiogenic 187Os of the gabbronorites. Processes such as magma differentiation, crustal contamination and sulfide saturation at different stages in magma chambers may have intervened during formation of the intrusion. Parental magmas were derived from picritic magmas that had fractionated olivine under S-undersaturated conditions before entering a deep-seated staging magma chamber, where the parental magmas crystallized olivine, assimilated minor crustal rocks and reached sulfide saturation, forming an olivine- and sulfide-laden crystal mush in the lower part and evolved magmas in the upper part of the chamber. The evolved magmas were forced out of the staging chamber and became S-undersaturated due to a pressure drop during ascent to a shallow magma chamber. The magmas re-attained sulfide saturation by assimilating external S from S-rich country rocks. They may have entered the shallow magma chamber as several pulses so that several gabbronorite layers each with sulfide segregated to the base and a sulfide-poor upper part. The olivine gabbro unit formed from a new and more primitive magma that entrained olivine crystals and sulfide droplets from the lower part of the staging chamber. A transitional zone formed along the boundary with the gabbronorite unit due to chemical interaction between the two rock units.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号