首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   14篇
  国内免费   1篇
测绘学   11篇
大气科学   52篇
地球物理   146篇
地质学   206篇
海洋学   32篇
天文学   110篇
自然地理   50篇
  2021年   9篇
  2020年   7篇
  2019年   11篇
  2018年   6篇
  2017年   5篇
  2016年   11篇
  2015年   17篇
  2014年   13篇
  2013年   24篇
  2012年   11篇
  2011年   17篇
  2010年   22篇
  2009年   27篇
  2008年   32篇
  2007年   18篇
  2006年   19篇
  2005年   18篇
  2004年   24篇
  2003年   14篇
  2002年   25篇
  2001年   16篇
  2000年   21篇
  1999年   14篇
  1998年   6篇
  1997年   12篇
  1996年   12篇
  1995年   12篇
  1994年   12篇
  1993年   5篇
  1991年   8篇
  1990年   7篇
  1989年   7篇
  1988年   4篇
  1987年   6篇
  1985年   7篇
  1984年   10篇
  1983年   6篇
  1982年   8篇
  1981年   8篇
  1980年   9篇
  1979年   14篇
  1978年   10篇
  1977年   7篇
  1976年   8篇
  1975年   8篇
  1974年   5篇
  1973年   9篇
  1972年   7篇
  1971年   3篇
  1944年   4篇
排序方式: 共有607条查询结果,搜索用时 15 毫秒
71.
Quantifying strain birefringence halos around inclusions in diamond   总被引:1,自引:0,他引:1  
The pressure and temperature conditions of formation of natural diamond can be estimated by measuring the residual stress that an inclusion remains under within a diamond. Raman spectroscopy has been the most commonly used technique for determining this stress by utilising pressure-sensitive peak shifts in the Raman spectrum of both the inclusion and the diamond host. Here, we present a new approach to measure the residual stress using quantitative analysis of the birefringence induced in the diamond. As the analysis of stress-induced birefringence is very different from that of normal birefringence, an analytical model is developed that relates the spherical inclusion size, R i, host diamond thickness, L, and measured value of birefringence at the edge of the inclusion, \Updelta n(R\texti )\textav \Updelta n(R_{\text{i}} )_{\text{av}} , to the peak value of birefringence that has been encountered; to first order \Updelta n\textpk = (3/4)(L/R\texti )  \Updelta n(R\texti )\textav \Updelta n_{\text{pk}} = (3/4)(L/R_{\text{i}} ) \, \Updelta n(R_{\text{i}} )_{\text{av}} . From this birefringence, the remnant pressure (P i) can be calculated using the photoelastic relationship \Updelta n\textpk = - (3/4)n3 q\textiso P\texti \Updelta n_{\text{pk}} = - (3/4)n^{3} q_{\text{iso}} P_{\text{i}} , where q iso is a piezo-optical coefficient, which can be assumed to be independent of crystallographic orientation, and n is the refractive index of the diamond. This model has been used in combination with quantitative birefringence analysis with a MetriPol system and compared to the results from both Raman point and 2D mapping analysis for a garnet inclusion in a diamond from the Udachnaya mine (Russia) and coesite inclusions in a diamond from the Finsch mine (South Africa). The birefringence model and analysis gave a remnant pressure of 0.53 ± 0.01 GPa for the garnet inclusion, from which a source pressure was calculated as 5.7 GPa at 1,175°C (temperature obtained from IR analysis of the diamond host). The Raman techniques could not be applied quantitatively to this sample to support the birefringence model; they were, however, applied to the largest coesite inclusion in the Finsch sample. The remnant pressure values obtained were 2.5 ± 0.1 GPa (birefringence), 2.5 ± 0.3 GPa (2D Raman map), and 2.5–2.6 GPa (Raman point analysis from all four inclusions). However, although the remnant pressures from the three methods were self-consistent, they led to anomalously low source pressure of 2.9 GPa at 1,150°C (temperature obtained from IR analysis) raising serious concerns about the use of the coesite-in-diamond geobarometer.  相似文献   
72.
Dynamic soil-structure interaction (DSSI) plays a fundamental role in many geotechnical and/or structural design situations, as clearly shown by the damage which occurred during several recent earthquakes (Kobe 1995; Koaceli 1999; Chi-Chi 1999; L’Aquila 2009). For a long time civil engineering researchers have devoted increasing attention to this subject. Thanks to their efforts, several technical regulations, such as EC8 (2003), have taken DSSI into account. However, many steps are still necessary in order to increase our knowledge regarding this complex phenomenon, as well as to make all the results achieved known to academics and practitioners. This paper presents the results of a shaking table test performed on a scaled physical model consisting of a 3-D steel frame resting on a bed of sand. The experimental results are compared with the numerical ones obtained using a sophisticated elasto-plastic constitutive model recently implemented in the FEM code utilised. The solution of geotechnical problems requires the use of appropriate constitutive models. Many interesting constitutive models have been developed, but only a few of these have been implemented into commercial numerical codes; which is particularly so when dynamic analyses are required. The described experimental results, as well as the comparison between them and the numerical results, allow interesting considerations to be drawn on dynamic soil-structure interaction and on its numerical simulation.  相似文献   
73.
During the 1st Lagrangian experiment of the North Atlantic Regional Aerosol Characterisation Experiment (ACE‐2), a parcel of air was tagged by releasing a smart, constant level balloon into it from the Research Vessel Vodyanitskiy . The Meteorological Research Flight's C‐130 aircraft then followed this parcel over a period of 30 h characterising the marine boundary layer (MBL), the cloud and the physical and chemical aerosol evolution. The air mass had originated over the northern North Atlantic and thus was clean and had low aerosol concentrations. At the beginning of the experiment the MBL was over 1500 m deep and made up of a surface mixed layer (SML) underlying a layer containing cloud beneath a subsidence inversion. Subsidence in the free troposphere caused the depth of the MBL to almost halve during the experiment and, after 26 h, the MBL became well mixed throughout its whole depth. Salt particle mass in the MBL increased as the surface wind speed increased from 8 m s−1 to 16 m s−1 and the accumulation mode (0.1μm to 3.0 μm) aerosol concentrations quadrupled from 50 cm−3 to 200 cm−3. However, at the same time the total condensation nuclei (>3 nm) decreased from over 1000 cm−3 to 750 cm−3. The changes in the accumulation mode aerosol concentrations had a significant effect on the observed cloud microphysics. Observational evidence suggests that the important processes in controlling the Aitken mode concentration which, dominated the total CN concentration, included, scavenging of interstitial aerosol by cloud droplets, enhanced coagulation of Aitken mode aerosol and accumulation mode aerosol due to the increased sea salt aerosol surface area, and dilution of the MBL by free tropospheric air.  相似文献   
74.
To measure oceanographic parameters such as currents, temperature, conductivity, pressure, and suspended sediment concentrations, two film-recording current meters were upgraded with microprocessor-controlled data recorders and additional sensors. Two telemetry links relay data and allow the in situ operation of the remote instrument to be checked. In one configuration, the bottom-mounted current meter communicated by a 35-m-long wire to a small surface spar buoy, and then by a packet radio link to a nearby ship. In another development, the current meter relays data to a controller and buoyant data capsule on the bottom instrument package. The controller collects and processes the data from the current meter and periodically transfers these processed data to a data capsule and releases it. When released, the capsule rises to the surface and transmits its data to shore via the ARGOS satellite, while acting as a satellite tracked drifter  相似文献   
75.
We present first results from a monitoring campaign of GRS 1915+105 undertaken with the USA X-ray timing experiment on the ARGOS satellite. A variety of behaviour has been observed, ranging from low, steady X-ray emission to rapid quasi-periodic flaring on timescales of approximately 10–120 seconds.  相似文献   
76.
77.
Problems raised by R CMa are revisited. The theoretical significance of observable period changes is noted. Some recent observations are presented and briefly considered against this background.  相似文献   
78.
Polarimetric line profiles arising from the Doppler redistribution of monochromatic stellar line radiation, Thomson scattered in a Keplerian rotating circumstellar disc are presented. It is shown that analysis of the scattered line profiles at different wavelengths which, due to Doppler redistribution, sample different disc regions allows the disc inclination to be determined.  相似文献   
79.
We have performed an experimental and modeling study of the partial melting behavior of the HED parent body and of the fractional crystallization of liquids derived from its mantle. We estimated the mantle composition by assuming chondritic ratios of refractory lithophile elements, adjusting the Mg# and core size to match the density and moment of inertia of Vesta, and the compositions of Mg‐rich olivines found in diogenites. The liquidus of a mantle with Mg# (=100*[Mg/(Mg+Fe)]) 80 is ~1625 °C and, under equilibrium conditions, the melt crystallizes olivine alone until it is joined by orthopyroxene at 1350 °C. We synthesized the melt from our 1350 °C experiment and simulated its fractional crystallization path. Orthopyroxene crystallizes until it is replaced by pigeonite at 1200 °C. Liquids become eucritic and crystal assemblages resemble diogenites below 1250 °C. MELTS correctly predicts the olivine liquidus but overestimates the orthopyroxene liquidus by ~70 °C. Predicted melt compositions are in reasonable agreement with those generated experimentally. We used MELTS to determine that the range of mantle compositions that can produce eucritic liquids and diogenitic solids in a magma ocean model is Mg# 75–80 (with chondritic ratios of refractory elements). A mantle with Mg# ~ 70 can produce eucrites and diogenites through sequential partial melting.  相似文献   
80.
A distinct magnetic cloud (MC) was observed in-situ at the Solar TErrestrial RElations Observatory (STEREO)-B on 20?–?21 January 2010. About three days earlier, on 17 January, a bright flare and coronal mass ejection (CME) were clearly observed by STEREO-B, which suggests that this was the progenitor of the MC. However, the in-situ speed of the event, several earlier weaker events, heliospheric imaging, and a longitude mismatch with the STEREO-B spacecraft made this interpretation unlikely. We searched for other possible solar eruptions that could have caused the MC and found a faint filament eruption and the associated CME on 14?–?15 January as the likely solar source event. We were able to confirm this source by using coronal imaging from the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)/EUVI and COR and Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronograph (LASCO) telescopes and heliospheric imaging from the Solar Mass Ejection Imager (SMEI) and the STEREO/Heliospheric Imager instruments. We use several empirical models to understand the three-dimensional geometry and propagation of the CME, analyze the in-situ characteristics of the associated ICME, and investigate the characteristics of the MC by comparing four independent flux-rope model fits with the launch observations and magnetic-field orientations. The geometry and orientations of the CME from the heliospheric-density reconstructions and the in-situ modeling are remarkably consistent. Lastly, this event demonstrates that a careful analysis of all aspects of the development and evolution of a CME is necessary to correctly identify the solar counterpart of an ICME/MC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号