首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   20篇
  国内免费   14篇
测绘学   23篇
大气科学   37篇
地球物理   117篇
地质学   188篇
海洋学   50篇
天文学   17篇
综合类   5篇
自然地理   32篇
  2024年   1篇
  2023年   6篇
  2022年   10篇
  2021年   33篇
  2020年   25篇
  2019年   24篇
  2018年   29篇
  2017年   31篇
  2016年   30篇
  2015年   9篇
  2014年   27篇
  2013年   37篇
  2012年   20篇
  2011年   34篇
  2010年   11篇
  2009年   21篇
  2008年   19篇
  2007年   16篇
  2006年   7篇
  2005年   7篇
  2004年   11篇
  2003年   7篇
  2002年   8篇
  2001年   1篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1987年   3篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有469条查询结果,搜索用时 15 毫秒
181.
The structural geometry, kinematics and density structure along the rear of the offshore Taiwan accretionary prism were studied using seismic reflection profiling and gravity modeling. Deformation between the offshore prism and forearc basin at the point of incipient collision, and southward into the region of subduction, has been interpreted as a tectonic wedge, similar to those observed along the front of mountain ranges. This tectonic wedge is bounded by an east-dipping roof thrust and a blind, west-dipping floor thrust. An east-dipping sequence of forearc-basin strata in the hanging wall of the roof thrust reaches a thickness in excess of 4 km near the tip of the interpreted tectonic wedge. Section restoration of the roof sequence yields an estimate of 4 km of shortening, which is small compared with that inferred in the collision area to the north, based on the variation in distance between the apex of the prism and the island arc.Previous studies propose that either high-angle normal faulting or backfolding has exhumed the metamorphic rocks along the eastern flank of the Central Range in the collision zone on land. To better constrain the initial crustal configuration, we tested 350 crustal models to fit the free-air gravity anomaly data in the offshore region to study the density structure along the rear of the accretionary prism in the subduction and initial collision zones before the structures become more complex in the collision zone on land. The gravity anomaly, observed in the region of subduction (20.2°N), can be modeled with the arc basement forming a trenchward-dipping backstop that is overlain by materials with densities in the range of sedimentary rocks. Near the point of incipient collision (20.9°N), however, the free-air gravity anomaly over the rear of the prism is approximately 40 mgal higher, compared with the region of subduction, and requires a significant component of high density crustal rocks within the tectonic wedge. These results suggest that the forearc basement may be deformed along the rear of the prism, associated with the onset of collision, but not in the subduction region further to the south.  相似文献   
182.
Solid–liquid separation of tailings slurries in gravity thickeners relies on the efficient mixing of slurry and dilute polymer flocculant solutions within the feedwell. Computational fluid dynamics (CFD) can provide predictions of solids distribution, liquor velocity and shear rate within a feedwell, and with the incorporation of an adsorption model, can also assess the effectiveness of flocculant mixing. This study presents the first use of feedwell CFD to examine the effect of the flocculant inlet direction and velocity on the subsequent distribution and adsorption of flocculant. When flocculant is injected inside the feed stream, a high inlet nozzle velocity will maximise adsorption, with injection preferably vertically upward or towards the feedwell walls. For injection inside the dilution stream (vertical upflow of liquor within the feedwell), the flocculant should be directed either upwards or inwards away from the strong downward flow of the feed stream, with the velocity not critical.At flocculant inlet velocities predicted by CFD to enhance mixing and adsorption, the shear rate experienced within the injection pipe exceeds that in the feedwell, and the duration under higher shear may be greater. Pipe flow studies for several flocculants have confirmed reductions in activity at a solution concentration of 0.025 wt.%; this effect diminishes with greater dilution. Much of this lost activity is recovered on standing, indicating that the applied shear leads to a mixture of chain scission (irreversible) and entanglement (reversible). Minimising the duration of such shear effects on flocculant solution transport to the feedwell is essential, as the potential for increased flocculant demand and reduced flocculation efficiency can easily exceed any benefit from improved feedwell mixing.  相似文献   
183.
Quartz vein systems developed in and adjacent to shear zones host major gold deposits in the Kambalda region of the Norseman–Wiluna greenstone belt. At the Revenge Mine, two groups of mineralised reverse shear zones formed as conjugate, near-optimally oriented sets during ESE subhorizontal shortening adjacent to a major transpressional shear system. The shear zones developed at temperatures of about 400°C in a transitional brittle–ductile regime. Deformation was associated with high fluid fluxes and involved fault-valve behaviour at transiently near-lithostatic fluid pressures. During progressive evolution of the shear system, early brittle and ductile deformation was overprinted by predominantly brittle deformation. Brittle shear failure was associated with fault dilation and the formation of fault-fill veins, particularly at fault bends and jogs. A transition from predominantly brittle shear failure to combined shear along faults and extension failure adjacent to faults occurred late during shear zone evolution and is interpreted as a response to a progressive decrease in maximum shear stress and a decrease in effective stresses. The formation of subhorizontal stylolites, locally subvertical extension veins and minor normal faults in association with thrust faulting, indicates episodic or transient reorientation of the near-field maximum principal stress from a subhorizontal to a near-vertical attitude during some fault-valve cycles. Local stress re-orientation is interpreted as resulting from near-total shear stress release and overshoot during some rupture events. Previously described fault-valve systems have formed predominantly in severely misoriented faults. The shear systems at Revenge Mine indicate that fault-valve action, and associated fluctuations in shear stress and fluid pressure, can influence the mechanical behaviour of optimally-oriented faults.  相似文献   
184.
This study compares the performance of transient rainfall infiltration and grid-based regional slope stability (TRIGRS) model and time-variant slope stability (TiVaSS) model in the prediction of rainfall-induced shallow landslides. TRIGRS employs one-dimensional (1-D) subsurface flow to simulate the infiltration rate, whereas a three-dimensional (3-D) model is utilized in TiVaSS. The former has been widely used in landslide modeling, while the latter was developed only recently. Both programs are used for the spatiotemporal prediction of shallow landslides caused by rainfall. This study uses the July 2011 landslide event that occurred in Mt. Umyeon, Seoul, Korea, for validation. The performance of the two programs is evaluated by comparison with data of the actual landslides in both location and timing by using a landslide ratio for each factor of safety class (\({\text{LR}}_{\text{class}}\) index), which was developed for addressing point-like landslide locations. Moreover, the influence of surface flow on landslide initiation is assessed. The results show that the shallow landslides predicted by the two models are highly consistent with those of the observed sliding sites, although the performance of TiVaSS is slightly better. Overland flow affects the buildup of the pressure head and reduces the slope stability, although this influence was not significant in this case. A slight increase in the predicted unstable area from 19.30 to 19.93% was recorded when the overland flow was considered. It is concluded that both models are suitable for application in the study area. However, although it is a well-established model requiring less input data and shorter run times, TRIGRS produces less accurate results.  相似文献   
185.
A small-scale pile has been developed in the laboratory to investigate the thermo-mechanical behavior of energy piles subjected to a significant number of thermal cycles. The pile (20 mm external diameter), installed in dry sand, was initially loaded at its head to 0, 20, 40 and 60% of its ultimate bearing capacity (500 N). At the end of each loading step, 30 heating/cooling cycles were applied. The long-term behavior of the pile was observed in terms of head settlement, axial force profile, soil and pile temperature, and stress in soil. The results evidence the irreversible settlement of the pile head induced by thermal cycles under constant load head. In addition, the incremental irreversible settlement that accumulates after each thermal cycle decreases when the number of cycles increases. The evolution of irreversible pile head settlement versus number of cycles can be reasonably predicted by an asymptotic equation.  相似文献   
186.
This paper presents a full 2-D X/Z numerical model for sediment transport in open channels and estuaries using a two-phase (fluid–solid particle) approach. The physical concept and the mathematical background of the model are given and test-cases have been carried out to validate the proposed model. In order to illustrate its feasibility for a real estuary, the model has been applied to simulate the suspended-sediment transport and the formation of turbidity maximum in the Seine estuary. The numerical results show that the main characteristics of estuarine hydro-sediment dynamics in the Seine estuary are in fact reproduced by the proposed model. A qualitative agreement between the numerical results and the actual observations has been obtained and is presented in this paper.  相似文献   
187.
188.
Determination of sediment stability in the field is challenging because bed shear stress (BSS), a determining factor of sediment erosion, can’t easily be directly measured. To tackle this challenge and reliably assess sediment erodibility in a fast flowing river, a standalone underwater camera system and a new insitu flume (ISF) were developed and applied in this study. The camera system was used to record sediment movement and the new ISF was used for measuring critical bottom shear stress (CBSS). The camera can be deployed alone in water to record videos or take pictures with light emitting diode (LED) lighting and flexible schedule settings. The ISF is based on the concept that the amount of force needed to erode the same particle under different flow conditions should be similar. Two high resolution Acoustic Doppler Current Profilers (ADCP) also were deployed in the field to collect velocity-depth profiles which are used by conventional methods to calculate BSS with the law of the wall. The sediment erodibility was then assessed based on the comparison between the obtained CBSS and BSS and then further verified with the recorded observations from the deployed camera. The results reveal that the widely used conventional method can produce large uncertainties and is not adequate to provide meaningful conclusion under these conditions.  相似文献   
189.
A case study of slope stability mapping is presented for the A Luoi district situated in the mountainous western part of Thua Thien-Hue Province in Central Vietnam, where slope failures occur frequently and seriously affect local living conditions. The methodology is based on the infinite slope stability model, which calculates a safety factor as the ratio between shear strength and shear stress. The triggering mechanism for slope instability considered in the analysis is the maximum daily precipitation recorded in a 28-year period (1976–2003) taking into account runoff and infiltration predicted with a hydrological model. All necessary physical parameters are derived from topography, soil texture, and land use, in GIS-raster grid format with pixel size of 30 by 30 m. Results of the analysis are compared with a slope failure inventory map of 2001, showing that more than 86.9 % of the existing slope failures are well predicted by the physically based slope stability model. It can be concluded that the larger part of the study area is prone to landsliding. The resulting slope stability map is useful for further research and land-use planning, but for precise prediction of future slope failures, more effort is needed with respect to spatial variation of causative factors and analysis techniques.  相似文献   
190.
In situ biogeochemical transformation involves biological formation of reactive minerals in an aquifer that can destroy chlorinated solvents such as trichloroethene (TCE) without accumulation of intermediates such as vinyl chloride. There is uncertainty regarding the materials and geochemical conditions that are required to promote biogeochemical transformation. The objective of this study was to identify amendments and biogeochemical conditions that promote in situ biogeochemical transformation. Laboratory columns constructed with plant mulch were supplemented with different amendments and were operated under varying conditions of water chemistry and hydraulic residence time. Four patterns of TCE removal were observed: (1) no removal, (2) biotic transformation of TCE to cis‐1,2‐dichloroethene (cis‐1,2‐DCE), (3) biogeochemical transformation of TCE without accumulation of reductive dechlorination products, and (4) mixed behavior where a combination of patterns was observed either simultaneously or over time. Principal coordinates analysis and analysis of variance (ANOVA) identified factors that promoted biogeochemical transformation: (1) high influent sulfate concentration, (2) relatively high hydraulic retention time, (3) supplementation of mulch with vegetable oil, and (4) addition of hematite or magnetite. The combination of the first three factors promoted complete sulfate reduction and a high volumetric sulfate consumption rate. The fourth factor provided a source of ferrous iron and/or a surface to which sulfide could react to form reactive iron sulfides. Many columns demonstrated either no TCE removal or a biotic TCE transformation pattern. Modification of column operation to include all four factors identified above promoted biogeochemical transformation in these columns. These results support the importance of the factors in biogeochemical transformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号