首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   10篇
大气科学   4篇
地球物理   33篇
地质学   30篇
海洋学   12篇
天文学   43篇
自然地理   19篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   4篇
  2011年   9篇
  2010年   3篇
  2009年   6篇
  2008年   7篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1989年   3篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1971年   2篇
排序方式: 共有141条查询结果,搜索用时 125 毫秒
111.
Iron isotope fractionations produced during chemical and biological Fe(II) oxidation are sensitive to the proportions and nature of dissolved and solid-phase Fe species present, as well as the extent of isotopic exchange between precipitates and aqueous Fe. Iron isotopes therefore potentially constrain the mechanisms and pathways of Fe redox transformations in modern and ancient environments. In the present study, we followed in batch experiments Fe isotope fractionations between Fe(II)aq and Fe(III) oxide/hydroxide precipitates produced by the Fe(III) mineral encrusting, nitrate-reducing, Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Isotopic fractionation in 56Fe/54Fe approached that expected for equilibrium conditions, assuming an equilibrium Δ56FeFe(OH)3-Fe(II)aq fractionation factor of +3.0‰. Previous studies have shown that Fe(II) oxidation by this Acidovorax strain occurs in the periplasm, and we propose that Fe isotope equilibrium is maintained through redox cycling via coupled electron and atom exchange between Fe(II)aq and Fe(III) precipitates in the contained environment of the periplasm. In addition to the apparent equilibrium isotopic fractionation, these experiments also record the kinetic effects of initial rapid oxidation, and possible phase transformations of the Fe(III) precipitates. Attainment of Fe isotope equilibrium between Fe(III) oxide/hydroxide precipitates and Fe(II)aq by neutrophilic, Fe(II)-oxidizing bacteria or through abiologic Fe(II)aq oxidation is generally not expected or observed, because the poor solubility of their metabolic product, i.e. Fe(III), usually leads to rapid precipitation of Fe(III) minerals, and hence expression of a kinetic fractionation upon precipitation; in the absence of redox cycling between Fe(II)aq and precipitate, kinetic isotope fractionations are likely to be retained. These results highlight the distinct Fe isotope fractionations that are produced by different pathways of biological and abiological Fe(II) oxidation.  相似文献   
112.
It is widely believed that various animal species can sense and respond to the geophysical stimuli that precede earthquakes, especially electromagnetic fields, although supporting field evidence is mostly anecdotal. Here we report on the reactions of four female giant pandas under observation over the three days prior to the Lushan (30.1°N, 103.0°E) magnitude 7.0 earthquake that occurred in Sichuan province, China, on April 20, 2013. We observed no significant generalized behavioral anomalies indicative of them perceiving an impending earthquake. We also observed no startle behaviors in the 5 s prior to tremors commencing, indicating that these pandas either did not detect or did not respond to precursor P-waves. Our findings suggest that although giant pandas have evolved in, and continue to occupy exclusively, a seismically active range in central China, they do not appear to perceive pre-earthquake geophysical warning signs.  相似文献   
113.
Mangroves occur in South African estuaries at their poleward distribution limits, extending into temperate habitats. In 1963, William Macnae published the first comprehensive assessment of mangrove swamps in South Africa and made firsthand observations of these mangrove ecosystems. This article reassesses South African mangrove habitats, highlighting changes since Macnae’s assessment, through a literature review of research done in the past 50 years and using the results of a dedicated mangrove survey spanning 2012–2017. Until now, changes have been recorded mostly for mangrove vegetation, including a change in mangrove cover and a poleward shift of mangrove species. While some mangrove-associated fauna have disappeared from most sites (e.g. the gastropod Terebralia palustris), others, such as fiddler crabs, have spread farther south. The effects of decreasing diversity with an increase in latitude were not observed along the South African coast. Instead, habitat quality and estuarine mouth state seem to exert greater influence on species diversity in the mangroves, and a poleward shift in species distribution is now evident not just for the mangrove flora but for the fauna as well. South African mangrove research needs to include a continuous monitoring plan, especially if we are to contribute to global knowledge on blue carbon, the effects of sea-level rise, and the resilience of the mangrove ecosystem.  相似文献   
114.
We present a new workflow for imaging damped three‐dimensional elastic wavefields in the Fourier domain. The workflow employs a multiscale imaging approach, in which offset lengths are laddered, where frequency content and damping of the data are changed cyclically. Thus, the inversion process is launched using short‐offset and low‐frequency data to recover the long spatial wavelength of the image at a shallow depth. Increasing frequency and offset length leads to the recovery of the fine‐scale features of the model at greater depths. For the fixed offset, we employ (in the imaging process) a few discrete frequencies with a set of Laplace damping parameters. The forward problem is solved with a finite‐difference frequency‐domain method based on a massively parallel iterative solver. The inversion code is based upon the solution of a least squares optimisation problem and is solved using a nonlinear gradient method. It is fully parallelised for distributed memory computational platforms. Our full‐waveform inversion workflow is applied to the 3D Marmousi‐2 and SEG/EAGE Salt models with long‐offset data. The maximum inverted frequencies are 6 Hz for the Marmousi model and 2 Hz for the SEG/EAGE Salt model. The detailed structures are imaged successfully up to the depth approximately equal to one‐third of the maximum offset length at a resolution consistent with the inverted frequencies.  相似文献   
115.
Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro‐geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO2 and CH4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ2H and δ18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface active layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ2H vs δ18O). Freeze‐out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze‐out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. This research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process‐based fine‐scale and intermediate‐scale hydrologic models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
116.
The rates of grain growth of stoichiometric dolomite [CaMg(CO3)2] and magnesite (MgCO3) have been measured at temperatures T of 700–800°C at a confining pressure P c of 300 MPa, and compared with growth rates of calcite (CaCO3). Dry, fine-grained aggregates of the three carbonates were synthesized from high purity powders by hot isostatic pressing (HIP); initial mean grain sizes of HIP-synthesized carbonates were 1.4, 1.1, and 17 μm, respectively, for CaMg(CO3)2, MgCO3, and CaCO3, with porosities of 2, 28, and 0.04% by volume. Grain sizes of all carbonates coarsened during subsequent isostatic annealing, with mean values reaching 3.9, 5.1, and 27 μm for CaMg(CO3)2, MgCO3, and CaCO3, respectively, in 1 week. Grain growth of dolomite is much slower than the growth rates of magnesite or calcite; assuming normal grain growth and n = 3 for all three carbonates, the rate constant K for dolomite (≃5 × 10−5 μm3/s) at T = 800°C is less than that for magnesite by a factor of ~30 and less than that for calcite by three orders of magnitude. Variations in carbonate grain growth may be affected by differences in cation composition and densities of pores at grain boundaries that decrease grain boundary mobility. However, rates of coarsening correlate best with the extent of solid solution; K is the largest for calcite with extensive Mg substitution for Ca, while K is the smallest for dolomite with negligible solid solution. Secondary phases may nucleate at advancing dolomite grain boundaries, with implications for deformation processes, rheology, and reaction kinetics of carbonates.  相似文献   
117.
118.
Lateral subsurface flow is generally assumed to occur as a result of the development of a saturated zone above a low‐permeability interface such as at the soil–bedrock contact, and it is often augmented by macropore flow. Our objective was to evaluate the development of lateral subsurface flow and soil saturation at a semiarid ponderosa pine forest in New Mexico with respect to the conceptual model of saturation building above the soil–bedrock contact. At this site, we have long‐term observations of the water budget components, including lateral flow. A 1·5 m deep by 7 m long trench was constructed to observe lateral subsurface flow and development of saturation directly. Our observations are based on flow resulting from a melting snowdrift. The edge of the drift was about 7 m upslope from the trench. Lateral subsurface flow only occurred from root macropores in the Bt soil horizon. Saturation developed and grew outward from flowing root macropores, rather than growing upward from the soil–bedrock interface. This macropore‐centred saturation resulted in a highly heterogeneous distribution of water content until enough macropores began flowing and individual macropore saturated zones grew large enough to coalesce and saturate large volumes of the soil. Our observations are based on one snowmelt event and a relatively short hillslope flow path, and thus do not represent a full range of hydrologic conditions. Nevertheless, the observed behaviour did not conform to the traditional model of soil–bedrock control of saturation and lateral flow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
119.
120.
The effects of vegetation root distribution on near‐surface water partitioning can be two‐fold. On the one hand, the roots facilitate deep percolation by root‐induced macropore flow; on the other hand, they reduce the potential for deep percolation by root‐water‐uptake processes. Whether the roots impede or facilitate deep percolation depends on various conditions, including climate, soil, and vegetation characteristics. This paper examines the effects of root distribution on deep percolation into the underlying permeable bedrock for a given soil profile and climate condition using HYDRUS modelling. The simulations were based on previously field experiments on a semiarid ponderosa pine (Pinus ponderosa) hillslope. An equivalent single continuum model for simulating root macropore flow on hillslopes is presented, with root macropore hydraulic parameterization estimated based on observed root distribution. The sensitivity analysis results indicate that the root macropore effect dominates saturated soil water flow in low conductivity soils (Kmatrix below 10?7 m/s), while it is insignificant in soils with a Kmatrix larger than 10?5 m/s, consistent with observations in this and other studies. At the ponderosa pine site, the model with simple root‐macropore parameterization reasonably well reproduces soil moisture distribution and some major runoff events. The results indicate that the clay‐rich soil layer without root‐induced macropores acts as an impeding layer for potential groundwater recharge. This impeding layer results in a bedrock percolation of less than 1% of the annual precipitation. Without this impeding layer, percolation into the underlying permeable bedrock could be as much as 20% of the annual precipitation. This suggests that at a surface with low‐permeability soil overlying permeable bedrock, the root penetration depth in the soil is critical condition for whether or not significant percolation occurs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号