A new basal non-pterodactyloid pterosaur, Changchengopterus pani gen. et sp. nov., is erected, on the basis of a nearly complete postcranial skeleton. The new taxon is distinguished by relatively short extensions of the prezygapophyses, postzygapophyses and haemal arches of the caudal vertebrae; a humerus that has a subtriangular deltopectoral crest; limb elements that decrease in length in the following order: ulna> wing-phalange 2 > wing-phalange 3 = wing-phalange 1>humerus >tibia>femur>wing-metacarpal. Phylogenetic analysis suggests that Changchengopterus is a basal member of rhamphorhynchoids, and more closely related to Dorygnathus than to other rhamphorhychoids. The geological age of the Changchengopterus -bearing sediments is no latter than the end of the Late Jurassic and it is possible Middle Jurassic. 相似文献
Pliocene and Pleistocene deposits from Grande‐Terre (Guadeloupe archipelago, French Lesser Antilles) provide a remarkable example of an isolated carbonate system built in an active margin setting, with sedimentation controlled by both rapid sea‐level changes and tectonic movements. Based on new field, sedimentological and palaeontological analyses, these deposits have been organized into four sedimentary sequences (S1 to S4) separated by three subaerial erosion surfaces (SB0, SB1 and SB2). Sequences S1 and S2 (‘Calcaires inférieurs à rhodolithes’) deposited during the Late Zanclean to Early Gelasian (planktonic foraminiferal Zones PL2 to PL5) in low subsidence conditions, on a distally steepened ramp dipping eastward. Red algal‐rich deposits, which dominate the western part of Grande‐Terre, change to planktonic foraminifer‐rich deposits eastward. Vertical movements of tens of metres were responsible for the formation of SB0 and SB1. Sequence S3 (‘Formation volcano‐sédimentaire’, ‘Calcaires supérieurs à rhodolithes’ and ‘Calcaires à Agaricia’) was deposited during the Late Piacenzian to Early Calabrian (Zones PL5 to PT1a) on a distally steepened, red algal‐dominated ramp that changes upward into a homoclinal, coral‐dominated ramp. Deposition of Sequence S3 occurred during a eustatic cycle in quiet tectonic conditions. Its uppermost boundary, the major erosion surface SB2, is related to the Cala1 eustatic sea‐level fall. Finally, Sequence S4 (‘Calcaires à Acropora’) probably formed during the Calabrian, developing as a coral‐dominated platform during a eustatic cycle in quiet tectonic conditions. The final emergence of the island could then have occurred in Late Calabrian times. 相似文献
Ambient noise measurements acquired in Yalova, which was highly damaged during the 1999 Izmit earthquake, are analyzed to explore the site characteristics. The region of Yalova is governed by complex geological and geomorphological structures consisting of river beds extending from the mountains to the sea, ridges between them, plains in front of them with different size, and the sea coast. As a result of these shallow geological features, the H/V curves exhibit complex patterns. Clear peaks in the H/V curves, which can be interpreted as reliable site resonance frequency, are observed only at about half of the measurement sites. At the remaining sites industrial peaks, broad peaks, or flat responses dominate the spectral ratio graphs. We observed that man-made noises generated by marble cutting machines in Hersek delta mask the site resonance frequencies or can be misinterpreted as a resonance frequency. In total, we identified three anthropogenic noise sources at fundamental frequencies of 1.3, 1.5, and 1.7 Hz along with their two- and threefold harmonics. The parts of H/V curves showing unusual low scattering can be a clue to identify anthropogenic effects. In the assessment of H/V curves, the site location and the similarity of the near surface geology were taken into account. The Laledere plain with thick and soft sediment sequence surprisingly displays flat responses due to a possible low impedance contrast. The Ciftlikkoy and Hacimehmet plains exhibit clear resonance peaks at nearly 1 Hz possessing the largest amplitudes. These sites experienced the highest damage in Yalova during the Izmit earthquake. In contrast, the Cinarcik region which was also exposed to high damage, do not show any obvious amplifications on the H/V curves. Generally, the H/V curves for valley and ridge sites in Yalova reveals a resonance peak at approximately 1 Hz and almost flat curves, respectively. However, several sites on the ridges and valleys portray different patterns. 相似文献
Abstract— Large impact crater formation is an important geologic process that is not fully understood. The current paradigm for impact crater formation is based on models and observations of impacts in homogeneous targets. Real targets are rarely uniform; for example, the majority of Earth's surface is covered by sedimentary rocks and/or a water layer. The ubiquity of layering across solar system bodies makes it important to understand the effect target properties have on the cratering process. To advance understanding of the mechanics of crater collapse, and the effect of variations in target properties on crater formation, the first “Bridging the Gap” workshop recommended that geological observation and numerical modeling focussed on mid‐sized (15–30 km diameter) craters on Earth. These are large enough to be complex; small enough to be mapped, surveyed and modelled at high resolution; and numerous enough for the effects of target properties to be potentially disentangled from the effects of other variables. In this paper, we compare observations and numerical models of three 18–26 km diameter craters formed in different target lithology: Ries, Germany; Haughton, Canada; and El'gygytgyn, Russia. Based on the first‐order assumption that the impact energy was the same in all three impacts we performed numerical simulations of each crater to construct a simple quantitative model for mid‐sized complex crater formation in a subaerial, mixed crystalline‐sedimentary target. We compared our results with interpreted geological profiles of Ries and Haughton, based on detailed new and published geological mapping and published geophysical surveys. Our combined observational and numerical modeling work suggests that the major structural differences between each crater can be explained by the difference in thickness of the pre‐impact sedimentary cover in each case. We conclude that the presence of an inner ring at Ries, and not at Haughton, is because basement rocks that are stronger than the overlying sediments are sufficiently close to the surface that they are uplifted and overturned during excavation and remain as an uplifted ring after modification and post‐impact erosion. For constant impact energy, transient and final crater diameters increase with increasing sediment thickness. 相似文献