首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   859篇
  免费   29篇
  国内免费   5篇
测绘学   6篇
大气科学   82篇
地球物理   208篇
地质学   263篇
海洋学   73篇
天文学   128篇
综合类   5篇
自然地理   128篇
  2022年   7篇
  2021年   9篇
  2020年   13篇
  2019年   22篇
  2018年   17篇
  2017年   17篇
  2016年   25篇
  2015年   28篇
  2014年   28篇
  2013年   46篇
  2012年   34篇
  2011年   38篇
  2010年   31篇
  2009年   52篇
  2008年   25篇
  2007年   42篇
  2006年   29篇
  2005年   37篇
  2004年   25篇
  2003年   32篇
  2002年   34篇
  2001年   30篇
  2000年   20篇
  1999年   17篇
  1998年   27篇
  1997年   7篇
  1996年   9篇
  1995年   9篇
  1994年   10篇
  1993年   6篇
  1992年   14篇
  1991年   9篇
  1990年   6篇
  1989年   8篇
  1988年   4篇
  1987年   8篇
  1986年   11篇
  1985年   5篇
  1984年   12篇
  1983年   10篇
  1982年   10篇
  1981年   8篇
  1980年   6篇
  1979年   13篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1975年   5篇
  1973年   9篇
  1971年   4篇
排序方式: 共有893条查询结果,搜索用时 15 毫秒
11.
Climate change and human activities: a case study in Xinjiang, China   总被引:4,自引:0,他引:4  
We examined both long-term climate variability and anthropogenic contributions to current climate change for Xinjiang province of northwest China. Xinjiang encompasses several mountain ranges and inter-mountain basins and is comprised of a northern semiarid region and a more arid southern region. Climate over the last three centuries was reconstructed from tree rings and temperature series were calculated for the past 50 years using weather station data. Three major conclusions from these analyses are: (1) Although temperature varied considerably in Xinjiang over the last 200 years, it was non-directional until the last 50 years when a substantial warming trend occurred; (2) The semiarid North Xinjiang was representative of the northern hemisphere climate, while the more arid South Xinjiang resembled the southern hemisphere climate, meanwhile, (3) The entire Xinjiang province captured the global-scale climate signal. We also compared human contributions to global change between North and South Xinjiang, including land cover/land use, population, and greenhouse gas production. For both regions, urban areas acted as heat islands; and large areas of grassland and forest were converted to barren land, especially in North Xinjiang. Additionally, North Xinjiang also showed larger increase in population and greenhouse gas emissions mainly associated with animal production than those in South Xinjiang. Although Xinjiang province is a geographically coupled mountain–basin system, the two regions have distinct climate patterns and anthropogenic activities related to land cover conversion and greenhouse gas production.  相似文献   
12.
13.
An integrated assessment is presented of the potential impacts of the cattle tick (Boophilus microplus Canestrini) on the Australian beefindustry under climate change. The project was carried out as a case study to test an impact assessment approach that was designed to integrate biological, production and socio-economic impacts on managed and natural systems. A climate-driven, tick population model was run for European, zebu and crossbred cattle breeds having different levels of resistance to cattle ticks. A geographical information system (GIS) was used to organise spatial data on climate scenarios and industry statistics and to undertake regional analyses.A comparison was made of the two available approaches to conducting impact assessments, namely a bottom-up approach using sensitivity analysis and a top-down approach using climate change scenarios from a global circulation model (GCM) (CSIRO, 1996). The output, in terms of the abundance of tick populations and reductions in cattle productivity for each breed showed significant expansions in potential geographical impacts. In the absence of any adaptation measures, the results indicated changes in the losses in live weight gain of cattle tick ranging from 7780 tonnes per year by 2030 to 21637 tonnes per year by 2100, in comparison with estimates for current losses of 6594 tonnes per year.The principal adaptation options available to the beef industry are to switch to breeds that are more resistant to cattle ticks, or to increase the frequency of treatments with various tick control products. In this paper we focus on switching breeds as an adaptive measure when appropriate damage thresholds are triggered under the climate change scenarios. When adaptation measures were put in place, the losses ranged from 4962 tonnes in 2030 to 5619 tonnes in 2100 compared with 2636 tonnes at present if all producers adopted the optimal breed structure. Optimal breed structure was defined as one that would prevent tick numbers per animal exceeding 100 ticks per animal for European and 700 ticks per animal for crossbred breeds of cattle in any week of the year under a tick control strategy that was suitable for present climatic conditions. The lower threshold for European breeds reflects their vulnerability to explosive increases in numbers because of their low resistance to ticks. The results of the analyses using the GCM scenarios were used in an economic model to calculate costs of lost live-weight gain for 2030, 2070 and 2100. The greatest increases in costs were incurred in the southern parts of the current distribution in Queensland and potentially in northern New South Wales if the present quarantine barrier failed.Given the great uncertainty of the nature of possible regional changes in climate, analyses of the sensitivity of losses in live weight gain to changes in climatic variables were also undertaken. The analyses included a measure of likely impacts of cattle tick on the beef cattle industry, in the absence of adaptation measures, as a baseline measure of sensitivity. The likely impacts on crossbred cattle were insensitive to the climatic variables.When adaptive breed changes were allowed, the economic impacts on the industry were insensitive to the GCM scenarios. This suggests that, at least in this instance, reducing the uncertainties in climate change scenarios is not a priority if the adaptation strategies can be implemented in a cost-effective manner. Finally we made a qualitative assessment of the sustainability and robustness of alternative approaches to adaptation and assessed regional vulnerability to cattle tick under climate change. The conclusions were so strongly dependent on assumptions about the future of other global changes, in particular the ability to maintain quarantine barriers and to retain effective acaricides at comparable costs to the present, that we strongly recommend that risk assessments of climate change extend to all relevant variables in involved in global change where possible.  相似文献   
14.
A study was conducted to understand the hydrogeological processes dominating in the North 24 Parganas and South 24 Parganas based on representative 39 groundwater samples collected from selected area. The abundance of major ions was in the order of Ca2+ > Na+ > Mg2+ > K+ > Fe2+ for cations and HCO3 ? > PO4 3? > Cl? > SO4 2? > NO3 ? for anions. Piper trilinear diagram was plotted to understand the hydrochemical facies. Most of the samples are of Ca-HCO3 type. Based on conventional graphical plots for (Ca + Mg) vs. (SO4 + HCO3) and (Na + K) vs. Cl, it is interpreted that silicate weathering and ion exchange are the dominant processes within the study area. Previous studies have reported quartz, feldspar, illite, and chlorite clay minerals as the major mineral components obtained by the XRD analysis of sediments. Mineralogical investigations by SEM and EDX of aquifer materials have shown the occurrence of arsenic as coating on mineral grains in the silty clay as well as in the sandy layers. Excessive withdrawal of groundwater for irrigation and drinking purposes is responsible for fluctuation of the water table in the West Bengal. Aeration beneath the ground surface caused by fluctuation of the water table may lead to the formation of carbonic acid. Carbonic acid is responsible for the weathering of silicate minerals, and due to the formation of clay as a product of weathering, ion exchange also dominates in the area. These hydrogeological processes may be responsible for the release of arsenic into the groundwater of the study area, which is a part of North 24 Parganas and South 24 Parganas.  相似文献   
15.
16.
Predicting the future response of ice sheets to climate warming and rising global sea level is important but difficult. This is especially so when fast-flowing glaciers or ice streams, buffered by ice shelves, are grounded on beds below sea level. What happens when these ice shelves are removed? And how do the ice stream and the surrounding ice sheet respond to the abruptly altered boundary conditions? To address these questions and others we present new geological, geomorphological, geophysical and geochronological data from the ice-stream-dominated NW sector of the last British–Irish Ice Sheet (BIIS). The study area covers around 45 000 km2 of NW Scotland and the surrounding continental shelf. Alongside seabed geomorphological mapping and Quaternary sediment analysis, we use a suite of over 100 new absolute ages (including cosmogenic-nuclide exposure ages, optically stimulated luminescence ages and radiocarbon dates) collected from onshore and offshore, to build a sector-wide ice-sheet reconstruction combining all available evidence with Bayesian chronosequence modelling. Using this information we present a detailed assessment of ice-sheet advance/retreat history, and the glaciological connections between different areas of the NW BIIS sector, at different times during the last glacial cycle. The results show a highly dynamic, partly marine, partly terrestrial, ice-sheet sector undergoing large size variations in response to sub-millennial-scale climatic (Dansgaard–Oeschger) cycles over the last 45 000 years. Superimposed on these trends we identify internally driven instabilities, operating at higher frequency, conditioned by local topographic factors, tidewater dynamics and glaciological feedbacks during deglaciation. Specifically, our new evidence indicates extensive marine-terminating ice-sheet glaciation of the NW BIIS sector during Greenland Stadials 12 to 9 – prior to the main ‘Late Weichselian’ ice-sheet glaciation. After a period of restricted glaciation, in Greenland Interstadials 8 to 6, we find good evidence for rapid renewed ice-sheet build-up in NW Scotland, with the Minch ice-stream terminus reaching the continental shelf edge in Greenland Stadial 5, perhaps only briefly. Deglaciation of the NW sector took place in numerous stages. Several grounding-zone wedges and moraines on the mid- and inner continental shelf attest to significant stabilizations of the ice-sheet grounding line, or ice margin, during overall retreat in Greenland Stadials 3 and 2, and to the development of ice shelves. NW Lewis was the first substantial present-day land area to deglaciate, in the first half of Greenland Stadial 3 at a time of globally reduced sea-level c. 26 kabp , followed by Cape Wrath at c. 24 kabp. The topographic confinement of the Minch straits probably promoted ice-shelf development in early Greenland Stadial 2, providing the ice stream with additional support and buffering it somewhat from external drivers. However, c. 20–19 kabp , as the grounding-line migrated into shoreward deepening water, coinciding with a marked change in marine geology and bed strength, the ice stream became unstable. We find that, once underway, grounding-line retreat proceeded in an uninterrupted fashion with the rapid loss of fronting ice shelves – first in the west, then the east troughs – before eventual glacier stabilization at fjord mouths in NW Scotland by ~17 kabp. Around the same time, ~19–17 kabp , ice-sheet lobes readvanced into the East Minch – possibly a glaciological response to the marine-instability-triggered loss of adjacent ice stream (and/or ice shelf) support in the Minch trough. An independent ice cap on Lewis also experienced margin oscillations during mid-Greenland Stadial 2, with an ice-accumulation centre in West Lewis existing into the latter part of Heinrich Stadial 1. Final ice-sheet deglaciation of NW mainland Scotland was punctuated by at least one other coherent readvance at c. 15.5 kabp , before significant ice-mass losses thereafter. At the glacial termination, c. 14.5 kabp , glaciers fed outwash sediment to now-abandoned coastal deltas in NW mainland Scotland around the time of global Meltwater Pulse 1A. Overall, this work on the BIIS NW sector reconstructs a highly dynamic ice-sheet oscillating in extent and volume for much of the last 45 000 years. Periods of expansive ice-sheet glaciation dominated by ice-streaming were interspersed with periods of much more restricted ice-cap or tidewater/fjordic glaciation. Finally, this work indicates that the role of ice streams in ice-sheet evolution is complex but mechanistically important throughout the lifetime of an ice sheet – with ice streams contributing to the regulation of ice-sheet health but also to the acceleration of ice-sheet demise via marine ice-sheet instabilities.  相似文献   
17.
Deo  Anil  Chand  Savin S.  Ramsay  Hamish  Holbrook  Neil J.  McGree  Simon  Magee  Andrew  Bell  Samuel  Titimaea  Mulipola  Haruhiru  Alick  Malsale  Philip  Mulitalo  Silipa  Daphne  Arieta  Prakash  Bipen  Vainikolo  Vaiola  Koshiba  Shirley 《Climate Dynamics》2021,56(11):3967-3993

Southwest Pacific nations are among some of the worst impacted and most vulnerable globally in terms of tropical cyclone (TC)-induced flooding and accompanying risks. This study objectively quantifies the fractional contribution of TCs to extreme rainfall (hereafter, TC contributions) in the context of climate variability and change. We show that TC contributions to extreme rainfall are substantially enhanced during active phases of the Madden–Julian Oscillation and by El Niño conditions (particularly over the eastern southwest Pacific region); this enhancement is primarily attributed to increased TC activity during these event periods. There are also indications of increasing intensities of TC-induced extreme rainfall events over the past few decades. A key part of this work involves development of sophisticated Bayesian regression models for individual island nations in order to better understand the synergistic relationships between TC-induced extreme rainfall and combinations of various climatic drivers that modulate the relationship. Such models are found to be very useful for not only assessing probabilities of TC- and non-TC induced extreme rainfall events but also evaluating probabilities of extreme rainfall for cases with different underlying climatic conditions. For example, TC-induced extreme rainfall probability over Samoa can vary from ~ 95 to ~ 75% during a La Niña period, if it coincides with an active or inactive phase of the MJO, and can be reduced to ~ 30% during a combination of El Niño period and inactive phase of the MJO. Several other such cases have been assessed for different island nations, providing information that have potentially important implications for planning and preparing for TC risks in vulnerable Pacific Island nations.

  相似文献   
18.
The effects of monochromatic and polychromatic UV and visible (VIS) radiation on the optical properties (absorption and fluorescence) of chromophoric dissolved organic matter (CDOM) were examined for a Suwannee River fulvic acid (SRFA) standard and for water from the Delaware and Chesapeake Bays. The primary (direct) loss of absorption and fluorescence occurred at the irradiation wavelength(s), with smaller secondary (indirect) losses occurring outside the irradiation wavelength(s). The efficiency of both direct and indirect photobleaching decreased monotonically with increasing wavelength. Exposure to polychromatic light increased the CDOM absorption spectral slope (S), consistent with previous field measurements. An analysis of the monochromatic photobleaching kinetics argues that a model based on a simple superposition of multiple chromophores undergoing independent photobleaching cannot apply; this conclusion further implies that the absorption spectrum of CDOM cannot arise solely from a simple superposition of the spectra of numerous independent chromophores. The kinetics of CDOM absorption loss with the monochromatic irradiation were employed to create a simple, heuristic model of photobleaching. This model allowed us to examine the importance of the indirect photobleaching losses in determining the overall photobleaching rates as well as to model the photobleaching of natural waters under polychromatic light fields. Application of this model to natural waters closely predicted the change in the CDOM spectral shape caused by photodegradation. The time scale of this process was consistent with field observations acquired during the summertime for coastal waters in the Middle Atlantic Bight (MAB). The results indicate that the ratio of the photodegradation depth to the mixed layer depth is a key parameter controlling the rate of the photobleaching in surface waters.  相似文献   
19.
Suevite and melt breccia compositions in the boreholes Enkingen and Polsingen are compared with compositions of suevites from other Ries boreholes and surface locations and discussed in terms of implications for impact breccia genesis. No significant differences in average chemical compositions for the various drill cores or surface samples are noted. Compositions of suevite and melt breccia from southern and northeastern sectors of the Ries crater do not significantly differ. This is in stark contrast to the published variations between within‐crater and out‐of‐crater suevites from northern and southern sectors of the Bosumtwi impact structure, Ghana. Locally occurring alteration overprint on drill cores—especially strong on the carbonate‐impregnated suevite specimens of the Enkingen borehole—does affect the average compositions. Overall, the composition of the analyzed impact breccias from Ries are characterized by very little macroscopically or microscopically recognized sediment‐clast component; the clast populations of suevite and impact melt breccia are dominated consistently by granitic and intermediate granitoid components. The Polsingen breccia is significantly enriched in a dioritic clast component. Overall, chemical compositions are of intermediate composition as well, with dioritic‐granodioritic silica contents, and relatively small contributions from mafic target components. Selected suevite samples from the Enkingen core have elevated Ni, Co, Cr, and Ir contents compared with previously analyzed suevites from the Ries crater, which suggest a small meteoritic component. Platinum‐group element (PGE) concentrations for some of the enriched samples indicate somewhat elevated concentrations and near‐chondritic ratios of the most immobile PGE, consistent with an extraterrestrial contribution of 0.1–0.2% chondrite‐equivalent.  相似文献   
20.
We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gállego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 ± 5 ka, 64 ± 11 ka, and 36 ± 3 ka (from glacial till) and 20 ± 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 ± 21 ka, 97 ± 16 ka, 61 ± 4 ka, 47 ± 4 ka, and 11 ± 1 ka, and in the Gállego River valley at 151 ± 11 ka, 68 ± 7 ka, and 45 ± 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and Heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 ± 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 ± 4 ka) and Gállego (68 ± 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to 1) global climate changes controlled by insolation, 2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and 3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian Peninsula. Our scenario of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号