首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1136篇
  免费   35篇
  国内免费   2篇
测绘学   14篇
大气科学   92篇
地球物理   260篇
地质学   288篇
海洋学   116篇
天文学   226篇
综合类   4篇
自然地理   173篇
  2022年   7篇
  2021年   10篇
  2020年   13篇
  2019年   20篇
  2018年   18篇
  2017年   17篇
  2016年   30篇
  2015年   28篇
  2014年   26篇
  2013年   61篇
  2012年   39篇
  2011年   41篇
  2010年   40篇
  2009年   54篇
  2008年   37篇
  2007年   48篇
  2006年   34篇
  2005年   48篇
  2004年   35篇
  2003年   45篇
  2002年   41篇
  2001年   37篇
  2000年   32篇
  1999年   20篇
  1998年   25篇
  1997年   13篇
  1996年   17篇
  1995年   13篇
  1994年   14篇
  1993年   11篇
  1992年   17篇
  1991年   8篇
  1990年   9篇
  1989年   14篇
  1988年   8篇
  1987年   12篇
  1986年   13篇
  1985年   16篇
  1984年   24篇
  1983年   19篇
  1982年   15篇
  1981年   18篇
  1980年   10篇
  1979年   16篇
  1978年   10篇
  1977年   15篇
  1976年   13篇
  1975年   10篇
  1974年   7篇
  1973年   11篇
排序方式: 共有1173条查询结果,搜索用时 203 毫秒
351.
In this paper, we present results from the analysis of a multicomponent VSP from a fractured gas reservoir in the Bluebell-Altamont Field, Utah. Our analysis is focused on frequency-dependent anisotropy. The four-component shear-wave data are first band-pass filtered into different frequency bands and then rotated to the natural coordinates so that the fast and slow shear-waves are effectively separated. We find that the polarisations of the fast shear-waves are almost constant over the whole depth interval, and show no apparent variation with frequency. In contrast, the time delays between the split shear-waves decrease as the frequency increases. A linear regression is then applied to fit the time-delay variations in the target and we find that the gradients of linear fits to time delays show a decrease as frequency increases. Finally, we apply a time-frequency analysis method based on the wavelet transform with a Morlet wavelet to the data. The variation of shear-wave time delays with frequency is highlighted in the time-delay and frequency spectra. We also discuss two mechanisms giving rise to dispersion and frequency-dependent anisotropy, which are likely to explain the observation. These are scattering of seismic waves by preferentially aligned inhomogeneneities, such as fractures or fine layers, and fluid flow in porous rocks with micro-cracks and macro-fractures.  相似文献   
352.
353.
The morphology and internal structure of sand shoals and sandbanks around a coastal headland (Portland Bill, southern UK) are described on the basis of sidescan sonar and high-resolution seismic data sets. Morphological and architectural evidence, combined with the spatial distribution and nature of the bedrock surface, indicates that the evolution of these deposits, especially the sandbanks, may not only be hydrodynamically controlled but also morphologically controlled. The internal structure of the sand shoals reveals a simple pattern of clinoforms dipping in the same direction as their steeper profile. In contrast, the internal structure of the sandbanks reveals that their lower seismic units consist of a sedimentary core interpreted as the remains of a lowstand deposit or an early stage of the bank development under different prevailing hydrodynamic conditions. The present morphology of the sandbanks is represented by upper seismic units characterized by large-scale sandwave foresets dipping at 6–8°. The nature and morphology of the bedrock surface may also influence the development of sandbanks in some cases. For example, to the west of Portland Bill, the morphology of the bedrock surface (basal reflector) restricts the development of the Portland Bank. This information may explain the asymmetric evolution of sandbanks around Portland Bill.  相似文献   
354.
The structural geometry, kinematics and density structure along the rear of the offshore Taiwan accretionary prism were studied using seismic reflection profiling and gravity modeling. Deformation between the offshore prism and forearc basin at the point of incipient collision, and southward into the region of subduction, has been interpreted as a tectonic wedge, similar to those observed along the front of mountain ranges. This tectonic wedge is bounded by an east-dipping roof thrust and a blind, west-dipping floor thrust. An east-dipping sequence of forearc-basin strata in the hanging wall of the roof thrust reaches a thickness in excess of 4 km near the tip of the interpreted tectonic wedge. Section restoration of the roof sequence yields an estimate of 4 km of shortening, which is small compared with that inferred in the collision area to the north, based on the variation in distance between the apex of the prism and the island arc.Previous studies propose that either high-angle normal faulting or backfolding has exhumed the metamorphic rocks along the eastern flank of the Central Range in the collision zone on land. To better constrain the initial crustal configuration, we tested 350 crustal models to fit the free-air gravity anomaly data in the offshore region to study the density structure along the rear of the accretionary prism in the subduction and initial collision zones before the structures become more complex in the collision zone on land. The gravity anomaly, observed in the region of subduction (20.2°N), can be modeled with the arc basement forming a trenchward-dipping backstop that is overlain by materials with densities in the range of sedimentary rocks. Near the point of incipient collision (20.9°N), however, the free-air gravity anomaly over the rear of the prism is approximately 40 mgal higher, compared with the region of subduction, and requires a significant component of high density crustal rocks within the tectonic wedge. These results suggest that the forearc basement may be deformed along the rear of the prism, associated with the onset of collision, but not in the subduction region further to the south.  相似文献   
355.
The rotational behaviour of a rigid particle embedded in a linear viscous matrix undergoing cylindrical simple shear (Couette) flow was studied in 2D rock-analogue experiments. The influence of particle shape (elliptical vs. monoclinic), aspect ratio and the nature of the matrix/particle interface (lubricated vs. unlubricated) was investigated. Both matrix (PDMS) and lubricant (liquid soap) were linear viscous, with a viscosity ratio of ca. 104. Without lubricant, the rotational behaviour of all particles closely approximates the Jeffery theory. Lubricated monoclinic particles with the long diagonal initially parallel to the shear direction show back rotation and approach a stable position. Lubricated elliptical particles initially parallel to the shear direction also show back rotation but only transiently stabilize. Weak planar zones in the matrix adjacent to unlubricated elliptical particles do not induce backward rotation. In general for elliptical particles, rotation rate as a function of orientation depends on axial ratio and thickness of the lubricant mantle. For thick mantles (initially >10% of the volume of the particle), rotation rates are faster than Jeffery theory. For very thin mantles they are markedly slower compared with thick mantles, particularly when the long axis is nearly parallel to the shear direction. Rotation rates are never strictly zero, so true stabilization does not occur. However, for more elongate particles (axial RATIO=6) rotation rates are so slow that a very strong shape preferred orientation would develop in a lubricated elliptical particle population. In experiments, the volume of lubricant is constant and the thickness adjacent to the long side of the particle progressively decreases with increasing strain. In natural examples of porphyroclast systems, the weak mantle continually develops by recrystallization and/or cataclasis of the rigid clast core and a steady state between production and thinning could be attained, potentially leading to true stabilization for particles with a high axial ratio.  相似文献   
356.
The effects of phosphate speciation on both rates of isotopic exchange and oxygen isotope equilibrium fractionation factors between aqueous phosphate and water were examined over the temperature range 70 to 180°C. Exchange between phosphate and water is much faster at low pH than at high pH, an observation that is similar to what has been observed in the analogous sulfate-water system. Oxygen isotope fractionations between protonated species like H3PO4 and H2PO4 that are dominant at relatively low pH and species like PO43− and ion pairs like KHPO4 that are dominant at relatively high pH, range between 5 and 8‰ at the temperatures of the experiments. In aqueous phosphate systems at equilibrium, 18O/16O ratios increase with increasing degree of protonation of phosphate. This effect can be explained in part by the relative magnitudes of the dissociation constants of the protonated species. Under equilibrium conditions, carbonate in solution or in solid phases concentrates 18O relative to orthophosphate in solution or in solid phases at all temperatures, supporting the traditional view that biogenic phosphate is precipitated in near oxygen isotope equilibrium with body/ambient aqueous fluids with no attendant vital effects.  相似文献   
357.
Cherry  Neil 《Natural Hazards》2002,26(3):279-331
Natural Hazards - A large number of studies have identified significant physical, biological and health effects associated with changes in Solar and Geomagnetic Activity (S-GMA). Variations in...  相似文献   
358.
This paper focuses on the structural glaciology, dynamics, debris transport paths and sedimentology of the forefield of Soler Glacier, a temperate outlet glacier of the North Patagonian Icefield in southern Chile. The glacier is fed by an icefall from the icefield and by snow and ice avalanches from surrounding mountain slopes. The dominant structures in the glacier are ogives, crevasses and crevasse traces. Thrusts and recumbent folds are developed where the glacier encounters a reverse slope, elevating basal and englacial material to the ice surface. Other debris sources for the glacier include avalanche and rockfall material, some of which is ingested in marginal crevasses. Debris incorporated in the ice and on its surface controls both the distribution of sedimentary facies on the forefield and moraine ridge morphology. Lithofacies in moraine ridges on the glacier forefield include large isolated boulders, diamictons, gravel, sand and fine-grained facies. In relative abundance terms, the dominant lithofacies and their interpretation are sandy boulder gravel (ice-marginal), sandy gravel (glaciofluvial), angular gravel (supraglacial) and diamicton (basal glacial). Proglacial water bodies are currently developing between the receding glacier and its frontal and lateral moraines. The presence of folded sand and laminites in moraine ridges in front of the glacier suggests that, during a previous advance, Soler Glacier over-rode a former proglacial lake, reworking lacustrine deposits. Post-depositional modification of the landform/sediment assemblage includes melting of the ice-core beneath the sediment cover, redistribution of finer material across the proglacial area by aeolian processes and fluvial reworking. Overall, the preservation potential of this landform/sediment assemblage is high on the centennial to millennial timescale.  相似文献   
359.
360.
This paper outlines the results of stable isotope (δD-δ18O) analysis of snow and glacier ice undertaken as part of a larger study concerning structural glaciology, debris entrainment and debris transport patterns at Midtre Lovénbreen, Svalbard. Samples of fresh snow were collected from the glacier surface in spring 1999 and samples of surface glacier ice and basal ice samples were collected in summer 1999. When plotted on bivariate co-isotopic diagrams (δD-δ18O), the slopes obtained for snow and unmodified glacier ice (6.4 and 6.9, respectively) are less steep than those for the basal ice layer and transverse ice layers on the ice surface (7.6 and 7.7, respectively). The difference in the slope of these lines is not statistically significant at the sample size (50) used in this study. The results indicate that although stable isotope analysis clearly has potential for studies of debris entrainment, transport and structural glaciology, difficulties remain with applying this technique. It is therefore not possible to apply these isotopic techniques to ice facies of unknown origins. In particular, large sample numbers are required to establish statistical differences and high-resolution sampling of specific ice facies may be necessary to establish isotopic differences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号