首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
测绘学   2篇
大气科学   9篇
地球物理   14篇
地质学   5篇
天文学   4篇
综合类   1篇
自然地理   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2002年   1篇
  2000年   3篇
  1998年   4篇
  1997年   1篇
  1994年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有36条查询结果,搜索用时 10 毫秒
21.
The paper reports the main results of the EU project Millennium in the Mediterranean area over the last 500 years. It analyses a long series of temperature from Portugal, Spain, France, Italy and Greece. The series are obtained by combining indices from documentary sources from AD 1500 to the onset of regular instrumental observations. There is an ongoing discussion regarding the proper way of combining documentary and instrumental data and how to translate accurately the conventional indices from ??3 to +?3 into modern units, i.e. degree Celsius. This paper produces for the first time a number of early instrumental observations, in some cases (i.e. Italy and France) covering 350 years, including thereby the earliest regular observations after the invention of the thermometer. These Mediterranean data show that anomalous temperatures usually had only a locally limited effect, while only few extreme events had a widespread impact over the whole region, such as the summer of 2003. During the period from 1850 to the present day, the Mediterranean temperature anomaly was close to the Northern Hemisphere in spring and summer, while it was warmer in autumn and winter. Compared with the long-term instrumental records (i.e. 1655 onwards), the recent warming has not exceeded the natural past variability characterized by heating–cooling cycles with no significant long-term trends.  相似文献   
22.
Groundwater extraction is used to alleviate drought in many habitats. However, widespread drought decreases spring discharge and there is a need to integrate climate change research into resource management and action. Accurate estimates of groundwater discharge may be valuable in improving decision support systems of hydrogeological resource exploitation. The present study performs a forecast for groundwater discharge in Aquifer?s Cervialto Mountains(southern Italy). A time series starting in 1883 was the basis for longterm predictions. An Ensemble Discharge Prediction(EDis P) was applied, and the progress of the discharge ensemble forecast was inferred with the aid of an Exponential Smoothing(ES) model initialized at different annual times. EDisP-ES hindcast model experiments were tested, and discharge plume-patterns forecast was assessed with horizon placed in the year 2044. A 46-year cycle pattern was identified by comparing simulations and observations, which is essential for the forecasting purpose. ED is P-ES performed an ensemble mean path for the coming decades that indicates a discharge regime within ± 1 standard deviation around the mean value of 4.1 m~3 s~(-1). These fluctuations are comparable with those observed in the period 1961-1980 and further back, with changepoints detectable around the years 2025 and 2035. Temporary drought conditions are expected after the year 2030.  相似文献   
23.
24.
Software Spotlight   总被引:1,自引:0,他引:1  
  相似文献   
25.
The advent of instrumental and digital weather observatories has not eliminated the substantial gaps within surface meteorological time series. In particular, the lack of long-term homogeneous snowfall records may be a major impediment for hydrologic studies. We tested the hypothesis that reliable estimates of snowy days per year (SDY) can be produced for peninsular Italy, based on weather and site measurements from a limited set of stations centrally located in the Central Mediterranean Area. The core weather data are those from three observatories: Naples (40° 51′ N, 14° 15′ E, 150 m a.s.l.), Rome (41° 53′ N, 12° 28′ E, 100 m a.s.l.) and Montevergine (40° 56′ N, 14° 43′ E, 1280 m a.s.l.). A linear multivariate regression model (LMRM) was developed with candidate predictors (elevation, snowfall days and winter temperatures) for SDY reconstructions in the Benevento Valley (calibration site), whose homogenised SDY time series covers the period 1869–2018 (the longest in Southern Italy, extending back to 1832 thanks to documentary proxies but with missing values from 1911 to 1949). Three validation sites across peninsular Italy were considered: Vesuvius (40° 49′ N, 14° 24′ E, 605 m a.s.l.), Perugia (43° 05′ N, 12° 30′ E, 205 m a.s.l.) and Padua (45° 23′ N, 11° 51′ E, 15 m a.s.l.). The percent relative mean absolute error (%RMAE) for Benevento Valley was 20.2%, and though higher model errors were encountered at validation sites, they were in an acceptable range (32.6, 39.3 and 39.5% at Vesuvius, Perugia and Padua, respectively). Our SDY reconstruction in the Benevento Valley parallels, the pattern of water discharge occurred in the region during the same period, whose fluctuations result in changes of the pattern of snowfall days (i.e. decreasing snowfall days in recent times was accompanied by decreasing groundwater levels). This corroborates that the approach used to reconstruct SDY data takes dominant climate controlling factors of hydrological changes. We conclude that the LMRM, a statistically developed model, is physically meaningful and may be reasonably used for estimating SDY in peninsular Italy roughly down from the sub-Alpine range.  相似文献   
26.
This work analyses the climatic information of 607 weather anomalies belonging to a large documentary sources heritage of the continental southern Italy during the period 1675–1868. The collected information, mainly originating in Samnium River Region (SRR), were codified to obtain quantitative indices representative of a preliminary reconstruction of the precipitation anomalies. Historical written records of weather conditions that affect agriculture and living conditions have been taken as a proxy for instrumental observations of the relative wetness and dryness. As a consequence a numerical index was established to characterize the rainfall regime and its evolution. So, for the first time a series of the precipitation anomalies in SRR–continental southern Italy during the second half of the Little Ice Age was generated, and subsequently jointed to the instrumental series (1869–2002). Afterwards, in order to identify possible climatic change situations from 1675 today Normalized Cumulative Anomalies (NCA)–serie's and Climograms were produced. This historical period offered a sufficient range of natural variability in climate and circulation together with their relationships. Wettest period were detected in the 19th century, while that driest in the 18th century. However, the Mediterranean climate appearing from our study is far more complex than can be captured by a simple classification. In this way, the final picture is one switching between significantly different climate modes becoming apparent on several space-time-scales during the Late Little Ice Age.  相似文献   
27.
A simplified regression model is here calibrated on the basis of rainfall data records of Sicily (southern Italy), in order to show the model reliability in assessing the R-factor of the Universal Soil Loss Equation and its revised version (RUSLE) and to provide an estimate of long-term rainfall erosivity at medium-regional scale. The proposed model is a rearrangement of a former simplified model, formulated for the Italian environment, grouping three easily available rainfall variables on various time scales, which has been shown to be more successful than others in reproducing the rainfall erosive power over different locations of Italy. A geostatistical interpolation procedure is then applied for generating the regional long-term erosivity map with associated standard error. Areas with severe erosive rainfalls (from 2,000 up to more than 6,000 MJ mm ha−1 h−1) are pointed out which will correspond to areas suffering from severe soil erosion. Solving the problem of calculating the R-factor value in the RUSLE equation by means of such a simplified model here formulated will allow to predict the related soil loss. Moreover, given the availability of long time-series of concerned rainfall data, it will be possible to analyse the variability of rainfall erosivity within the last 50 years, and to investigate the application of RUSLE or similar soil erosion models with forecasting purposes of soil erosion risk.  相似文献   
28.
Theoretical and Applied Climatology - A gridded 0.25° reconstruction of rainfall kinetic energy (RKE) over the UK, on the basis of pluviometric observations and reanalysis back to 1765, shows...  相似文献   
29.
30.
Complexity‐reduction modelling can be useful for increasing the understanding of how the climate affects basin soil moisture response upon historical times not covered by detailed hydrological data. For this purpose, here is presented and assessed an empirical regression‐based model, the European Soil Moisture Empirical Downscaling (ESMED), in which different climatic variables, easily available on the web, are addressed for simplifying the inherent complexity in the long‐time studies. To accommodate this simplification, the Palmer Drought Severity Index, the precipitation, the elevation and the geographical location were used as input data in the ESMED model for predicting annual soil moisture budget. The test area was a large region including central Europe and Mediterranean countries, and the spatial resolution was initially set at 50 km. ESMED model calibration was made according to the soil moisture values retrieved from the Terrestrial Water Budget Data archive by selecting randomly 285 grid points (out of 2606). Once parameterized, ESMED model was performed at validation stage both spatially and temporally. The spatial validation was made for the grid points not selected in the calibration stage while the comparison with the soil moisture outputs of the Global Land Data Assimilation System–NOAH10 simulations upon the period 1950–2010 was carried out for the temporal validation. Moreover, ESMED results were found to be in good agreement with a root‐zone soil moisture product obtained from active and passive microwave sensors from various satellite missions. ESMED model was thus found to be reliable for both the temporal and spatial validations and, hence, it might represent a useful tool to characterize the long‐term dynamics of soil moisture–weather interaction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号