首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   7篇
  国内免费   1篇
测绘学   2篇
大气科学   24篇
地球物理   34篇
地质学   60篇
海洋学   19篇
天文学   12篇
综合类   1篇
自然地理   14篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   9篇
  2015年   7篇
  2014年   6篇
  2013年   8篇
  2012年   8篇
  2011年   14篇
  2010年   11篇
  2009年   11篇
  2008年   18篇
  2007年   11篇
  2006年   5篇
  2005年   7篇
  2004年   9篇
  2003年   8篇
  2002年   3篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1993年   3篇
  1992年   2篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
111.
Lakes on Mars were formed under periglacial to glacial climates. Extreme conditions prevailed including freezing temperatures, low atmospheric pressure, high evaporation/sublimation rates, and liquid water reservoirs locked in aquifers below a thick cryosphere. Although many of the Martian paleolakes display evidence of a short period of activity consistent with these conditions, others display clear evidence of lifetimes ranging from 104 to 105 years. The discovery of young seeping processes in impact craters and pole-facing valley slopes along with young volcanic activity raise questions about the conditions and limitations of liquid water flow and potential lacustrine activity today on Mars. Current climate models show that in today's conditions there exist regions on Mars of sols above the triple point and below boiling point of water that could provide hydrogeological conditions comparable to these of the Antarctic Dry Valley lakes (with the exception of the atmosphere pressure). The locations of the most recent Martian paleolakes are correlated with these regions. Throughout the history of Mars, lakes generated diversified environments, which could have provided potential habitats for life. The recent discovery of young energy sources from volcanism and the potential for liquid water reinforces the possibility of extant life on Mars, and suggests recent ponds and ancient paleolakes as primary targets for rover and sample return missions.  相似文献   
112.
Subrounded microaggregates 100 to 500 μm in diameter were collected in a Ferralsol located in the state of Goiàs. Observation of these microaggregates in dry conditions in scanning electron microscopy showed morphological characteristics that are representative of microaggregates described earlier in many Ferralsols. The shrinkage for drying of initially water saturated microaggregates was studied using an environmental scanning electron microscope. Results showed very small shrinkage for the microaggregates usually studied. However, the shrinkage varies since the volume of dried microaggregates was found to be 93 to 99% of their volume when they are saturated. To cite this article: N. Volland-Tuduri et al., C. R. Geoscience 336 (2004).  相似文献   
113.
Sterol and fatty alcohol biomarkers were analyzed in suspended and sinking particles from the water column (20–300 m) of the Almeria–Oran frontal zone to characterize the biogenic sources and biogeochemical processes. Diatom- and haptophyte-related sterols were predominant at all sites and vertical distributions of sterol, and fatty alcohol biomarkers in sinking particles were markedly different from suspended particles. In contrast to the relatively fresh sinking particles with elevated concentrations of phyto- and zooplanktonic sterols, suspended particles were extensively degraded with increasing depth and exhibited a more terrestrial and zooplanktonic signature with depth.Sterol and alcohol biomarkers distributions and δ13C values from the jet core and the associated gyre of Atlantic waters showed a decoupling between the sinking particles of 100- and 300-m depth, demonstrating the influence of lateral advection in the frontal zone. In contrast, vertical transport of the particulate organic matter in Mediterranean waters was interpreted from the similar isotopic and molecular composition at both depths. The high abundance of phytosterols and phytol below the euphotic zone at 100 m signified that downwelling of biomass occurred on the downstream side of the gyre. The high concentrations of phytosterols and POC, in combination with the high phytosterols/phytol ratio, indicated the accumulation of detrital plant material in the oligotrophic Mediterranean waters near the frontal zone.A higher contribution of phytol in the sinking particles collected during the night at the surface of the jet and at the upstream side of the gyre provided evidence of diel vertical zooplankton migration and important grazing by herbivorous zooplankton.Carbon isotope ratios of sterols confirmed that the 24-ethylcholest-5-en-3β-ol, commonly associated with terrestrial sources, was a substantial constituent of the phytoplankton in this area. However, the more δ13C depleted values obtained for this compound in suspended particles suggested that there was some terrestrial contribution that only becomes evident after degradation of the more labile marine organic matter.  相似文献   
114.
Pacific Northwest (PNW) hydrology is particularly sensitive to changes in climate because snowmelt dominates seasonal runoff, and temperature changes impact the rain/snow balance. Based on results from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4), we updated previous studies of implications of climate change on PNW hydrology. PNW 21st century hydrology was simulated using 20 Global Climate Models (GCMs) and 2 greenhouse gas emissions scenarios over Washington and the greater Columbia River watershed, with additional focus on the Yakima River watershed and the Puget Sound which are particularly sensitive to climate change. We evaluated projected changes in snow water equivalent (SWE), soil moisture, runoff, and streamflow for A1B and B1 emissions scenarios for the 2020s, 2040s, and 2080s. April 1 SWE is projected to decrease by approximately 38–46% by the 2040s (compared with the mean over water years 1917–2006), based on composite scenarios of B1 and A1B, respectively, which represent average effects of all climate models. In three relatively warm transient watersheds west of the Cascade crest, April 1 SWE is projected to almost completely disappear by the 2080s. By the 2080s, seasonal streamflow timing will shift significantly in both snowmelt dominant and rain–snow mixed watersheds. Annual runoff across the State is projected to increase by 2–3% by the 2040s; these changes are mainly driven by projected increases in winter precipitation.  相似文献   
115.
116.
In this study, the accuracy and the precision corresponding to Li isotopic measurements of low level samples such as marine and coastal carbonates are estimated. To this end, a total of fifty‐four analyses of a Li‐pure reference material (Li7‐N) at concentrations ranging from 1 to 6 ng ml?1 were first performed. The average δ7Li values obtained for solutions with and without chemical purification were 30.3 ± 0.4‰ (2s,= 19) and 30.2 ± 0.4‰ (2s,= 36), respectively. These results show that the chosen Li chemical extraction and purification procedure did not induce any significant isotope bias. Two available carbonate reference materials (JCt‐1 and JCp‐1) were analysed, yielding mean δ7Li values of 18.0 ± 0.27‰ (2s,= 6) and 18.8 ± 1.8‰ (2s,= 9), respectively. Small powder aliquots (< 15 mg) of JCp‐1 displayed significant isotope heterogeneity and we therefore advise favouring JCt‐1 for interlaboratory comparisons. The second part of this study concerns the determination of δ7Li value for biogenic carbonate samples. We performed a total of twenty‐nine analyses of seven different tropical coral species grown under controlled and similar conditions (24.0 ± 0.1 °C). Our sample treatment prior to Li extraction involved removal of organic matter before complete dissolution in diluted HCl. Our results show (a) a constant δ7Li within each skeleton and between the different species (δ7Li = 17.3 ± 0.7‰), and (b) a Li isotope fractionation of ?2‰ compared with inorganic aragonite grown under similar conditions. Comparison with literature data suggests a significant difference between samples living in aquaria and those grown in natural conditions. Finally, we investigate ancient (fossil) carbonate material and foraminifera extracted from marine sedimentary records. Different leaching procedures were tested using various HCl molarities. Results indicate that carbonate preferential dissolution must be carried out at an acid molarity < 0.18 mol l?1. Possible contamination from silicate minerals can be verified using the Al/Ca ratio, but the threshold value strongly depends on the carbonate δ7Li value. When the silicate/carbonate ratio is high in the sediment sample (typically > 2), contamination from silicates cannot be avoided, even at low HCl molarity (? 0.1 mol l?1). Finally, bulk carbonate and foraminifera extracted from the same core sample exhibited significant discrepancies: δ7Li values of foraminifera were more reproducible but were significantly lower. They were also associated with lower Sr/Ca and higher Mn/Ca ratios, suggesting a higher sensitivity to diagenesis, although specific vital effects cannot be fully ruled out.  相似文献   
117.
This paper presents the result of measurements of floodplain sedimentation using sediment traps. The study was carried out on two embanked floodplains along the Rivers Rhine and Meuse in The Netherlands during a 3 day flood in January 1993. Raster maps of sediment accumulation were made by interpolating the measurements from the traps using block kriging. The sediment maps show clear patterns in sediment accumulation, together with the estimated interpolation errors. Average sediment accumulation ranges between 0·57 and 1·0 kg m?2. High sediment accumulation is found on the levees (4 kg m?2 or more) and on low lying areas (1·6 kg m?2); sediment accumulation decreases with distance from the main channel. The sedimentation patterns are related to floodplain topography and sediment transporting mechanisms. Sediment transport by turbulent diffusion as well as by convection can be recognized. Also, flood duration and the process of sediment settling out in ponding water in closed depressions are important. The applied method allows comparison of the results with raster-based sedimentation models.  相似文献   
118.
Variance-based global sensitivity analysis (GSA) is used to study how the variance of the output of a model can be apportioned to different sources of uncertainty in its inputs. GSA is an essential component of model building as it helps to identify model inputs that account for most of the model output variance. However, this approach is seldom applied to spatial models because it cannot describe how uncertainty propagation interacts with another key issue in spatial modeling: the issue of model upscaling, that is, a change of spatial support of model output. In many environmental models, the end user is interested in the spatial average or the sum of the model output over a given spatial unit (for example, the average porosity of a geological block). Under a change of spatial support, the relative contribution of uncertain model inputs to the variance of aggregated model output may change. We propose a simple formalism to discuss this issue within a GSA framework by defining point and block sensitivity indices. We show that the relative contribution of an uncertain spatially distributed model input increases with its correlation length and decreases with the size of the spatial unit considered for model output aggregation. The results are briefly illustrated by a simple example.  相似文献   
119.
The potential effects of climate change on the hydrology and water resources of the Colorado River basin are assessed by comparing simulated hydrologic and water resources scenarios derived from downscaled climate simulations of the U.S. Department of Energy/National Center for Atmospheric Research Parallel Climate Model (PCM) to scenarios driven by observed historical (1950–1999) climate. PCM climate scenarios include an ensemble of three 105-year future climate simulations based on projected `business-as-usual'(BAU) greenhouse gas emissions and a control climate simulation based on static 1995 greenhouse gas concentrations. Downscaled transient temperature and precipitation sequences were extracted from PCM simulations, and were used to drive the Variable Infiltration Capacity (VIC) macroscale hydrology model to produce corresponding streamflow sequences. Results for the BAU scenarios were summarized into Periods 1, 2, and 3 (2010–2039,2040–2069, 2070–2098). Average annual temperature changes for the Colorado Riverbasin were 0.5 °C warmer for control climate, and 1.0, 1.7, and 2.4 °C warmer for Periods 1–3, respectively, relative to the historicalclimate. Basin-average annual precipitation for the control climate was slightly(1%) less than for observed historical climate, and 3, 6, and 3%less for future Periods 1–3, respectively. Annual runoff in the controlrun was about 10% lower than for simulated historical conditions, and 14, 18, and 17% less for Periods 1–3, respectively. Analysis of watermanagement operations using a water management model driven by simulated streamflows showed that streamflows associated with control and future BAU climates would significantly degrade the performance of the water resourcessystem relative to historical conditions, with average total basin storage reduced by 7% for the control climate and 36, 32 and 40% for Periods 1–3, respectively. Releases from Glen Canyon Dam to the LowerBasin (mandated by the Colorado River Compact) were met in 80% of years for the control climate simulation (versus 92% in the historical climate simulation), and only in 59–75% of years for the future climate runs. Annual hydropower output was also significantly reduced for the control and future climate simulations. The high sensitivity of reservoir system performance for future climate is a reflection of the fragile equilibrium that now exists in operation of the system, with system demands only slightly less than long-term mean annual inflow.  相似文献   
120.
Though the Maastrichtian Phosphates of Morocco have yielded very rich marine vertebrate assemblages, plesiosaurs remain very scarce in these strata. The only hitherto recognized taxon was Plesiosaurus mauritanicus Arambourg, 1952, regarded here as a nomem dubium. Here we describe a new genus and species of elasmosaurid plesiosaur, Zarafasaura oceanis, which represents the first valid elasmosaurid plesiosaur described from the latest Cretaceous of Africa, and the second one from this continent. A phylogenetic analysis of plesiosauroids indicates that Zarafasaura oceanis has close affinities with elasmosaurids from the Late Cretaceous of North America and Japan. Among its distinctive suite of characters, the general shape and organisation of its squamosal and palate are unique among elasmosaurids. This new taxon completes our understanding of Late Cretaceous plesiosaur palaeobiodiversity and palaeobiogeography, and shows that Maastrichtian plesiosaurs were characterized by a quite high degree of endemism. They were also highly diversified and distributed worldwide, which supports the hypothesis of a catastrophic extinction of plesiosaurs at the K/T boundary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号