首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   5篇
  国内免费   1篇
测绘学   3篇
地球物理   28篇
地质学   36篇
海洋学   2篇
天文学   3篇
综合类   2篇
自然地理   12篇
  2024年   2篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   3篇
  2017年   7篇
  2016年   2篇
  2015年   6篇
  2014年   5篇
  2013年   9篇
  2012年   6篇
  2011年   3篇
  2010年   5篇
  2009年   1篇
  2008年   4篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1993年   1篇
  1988年   2篇
  1986年   1篇
  1982年   1篇
排序方式: 共有86条查询结果,搜索用时 822 毫秒
11.
Studies of recorded ground motions and simulations have shown that deep sedimentary basins can greatly increase the intensity of earthquake ground motions within a period range of approximately 1–4 s, but the economic impacts of basin effects are uncertain. This paper estimates key economic indicators of seismic performance, expressed in terms of earthquake‐induced repair costs, using empirical and simulated seismic hazard characterizations that account for the effects of basins. The methodology used is general, but the estimates are made for a series of eight‐ to 24‐story residential reinforced concrete shear wall archetype buildings in Seattle, WA, whose design neglects basin effects. All buildings are designed to comply with code‐minimum requirements (i.e., reference archetypes), as well as a series of design enhancements, which include (a) increasing design forces, (b) decreasing drift limits, and (c) a combination of these strategies. As an additional reference point, a performance‐based design is also assessed. The performance of the archetype buildings is evaluated for the seismic hazard level in Seattle according to the 2018 National Seismic Hazard Model (2018 NSHM), which explicitly considers basin effects. Inclusion of basin effects results in an average threefold increase in annualized losses for all archetypes. Incorporating physics‐based ground motion simulations to represent the large‐magnitude Cascadia subduction interface earthquake contribution to the hazard results in a further increase of 22% relative to the 2018 NSHM. The most effective of the design strategies considered combines a 25% increase in strength with a reduction in drift limits to 1.5%.  相似文献   
12.

Mine planning is influenced by many sources of uncertainty. Significant sources of geological uncertainty in mine planning include uncertainty in layout of geological domains and uncertainty in metal grades. These two sources of uncertainty cannot be modeled separately because the distribution of the grade is controlled usually by geological domains. Two approaches exist for combining these two sources of uncertainty: the joint simulation approach and the cascade approach. In this paper, these two approaches were compared using a real case study. To this end, uncertainty in iron grade (quantitative variable) and ore zones (qualitative variable) was modeled using both approaches. There were some considerable differences in the results obtained by each approach, which confirm the importance of choosing the most appropriate approach with consideration of the dominate features of a deposit.

  相似文献   
13.
During the May 21, 2003 M w 6.8 Boumerdes earthquake, in the “Cité des 102 Logements” built on a hilltop, in Corso, heavy damages were observed: near the crest, a four-story RC building collapsed while others experienced severe structural damage and far from the crest, slight damage was observed. In the present paper, we perform a 2D slope topography seismic analysis and investigate its effects on the response at the plateau as well as the correlation with the observed damage distribution. A site-specific seismic scenario is used involving seismological, geological, and geotechnical data. 2D finite element numerical seismic study of the idealized Corso site subjected to vertical SV wave propagation is carried out by the universal code FLUSH. The results highlighted the main factors that explain the causes of block collapse, located 8-26 m far from the crest. These are as follows: (i) a significant spatial variation of ground response along the plateau due to the topographic effect, (ii) this spatial variation presents high loss of coherence, (iii) the seismic ground responses (PGA and response spectra) reach their maxima, and (iv) the fundamental frequency of the collapsed blocks coincides with the frequency content of the topographic component. For distances far from the crest where slight damages were observed, the topographic contribution is found negligible. On the basis of these results, it is important to take into account the topographic effect and the induced spatial variability in the seismic design of structures sited near the crest of slope.  相似文献   
14.
We present a preliminary estimation of tsunami hazard associated with the Makran subduction zone (MSZ) at the northwestern Indian Ocean. Makran is one of the two main tsunamigenic zones in the Indian Ocean, which has produced some tsunamis in the past. Northwestern Indian Ocean remains one of the least studied regions in the world in terms of tsunami hazard assessment. Hence, a scenario-based method is employed to provide an estimation of tsunami hazard in this region for the first time. The numerical modeling of tsunami is verified using historical observations of the 1945 Makran tsunami. Then, a number of tsunamis each resulting from a 1945-type earthquake (M w 8.1) and spaced evenly along the MSZ are simulated. The results indicate that by moving a 1945-type earthquake along the MSZ, the southern coasts of Iran and Pakistan will experience the largest waves with heights of between 5 and 7 m, depending on the location of the source. The tsunami will reach a height of about 5 m and 2 m in northern coast of Oman and eastern coast of the United Arab Emirates, respectively.  相似文献   
15.
A lattice spring model is developed for coupled fluid flow and deformation problems. The model has an underlying structure consisting of particles connected by springs for the solid and fluid bubbles, connected by fluid pipelines for fluid flow. Formulations of the model to describe the coupled fluid flow and deformation behavior of a solid are derived. A few examples of consolidation problems are presented and compared with analytical solutions with good agreement being obtained, which means that the lattice model developed in this study can correctly simulate the coupled fluid flow and deformation response of a solid.  相似文献   
16.
The present study deals with geochemical characteristics and petrogenesis of three younger granite varieties (coarse-grained biotite-muscovite granites (CBG), garnetiferous muscovite granites (GMG) and Abu Aggag biotite granites (AAG)) in El-Hudi area, east of Aswan, southeastern desert of Egypt. Mineral chemistry and whole rock chemistry data revealed that all granites have high SiO2 (70.8-74.7 wt.%), Al2O3 (12.8-14.3 wt.%), Na2O and K2O (>3.2 wt.%) contents with high Na2O/K2O ratios (~>1). Plagioclase feldspars range in composition from albite to oligoclase (An9-27) in CBG, oligoclase (An13-18) in GMG and albite (An2-6) in AAG. Potash feldspars are mainly perthitic microcline and exhibit chemical formulae as (Or93-96 Ab7-4 An0) in CBG, (Or95-98 Ab5-2 An0) in GMG and (Or82-98 Ab18-2 An0) in AAG. Biotites from CBG and GMG are enriched in (Mg and Ti) and depleted in (Al, Fe, Mn and K) compared with those of AAG. Biotites from CBG and GMG had been derived from calc-alkaline magma, whereas those from AAG had been derived from peraluminous magma. Chlorites from CBG and GMG are Mg-Fe bearing, while that from AAG is Fe-rich chlorite (chamosite). The CBG and GMG are Mg-rich monzogranites originated from high-K calc-alkaline magma with metaluminous to mildly peraluminous nature. The AAG are Fe-rich monzogranites to syenogranites generated from high-K calc-alkaline peraluminous magma. Both CBG and GMG are late- to post-orogenic granites, while the AAG are post-orogenic granites. All three granite varieties are considered as evolved I-type granites, formed under low to moderate water pressures (~ 0.5-7 kbars) and relatively high ranges of crystallization temperatures (~700-890°C). They were generated from partial melting of crustal materials at lower (CBG >30 km depth) and intermediate (GMG & AAG ~20-30 km depth) levels. The crystal fractionation was the predominant process during differentiation of parent magmas of these granites. Geochemical characteristics manifest that AAG represent the highly fractionated member of magma cycle differs from that produced CBG and GMG. The CBG are relatively enriched in both U and Th existing only within the accessory minerals such as zircon, sphene, and allanite.  相似文献   
17.
Primary Care is fundamental to a well‐functioning health system. Various geographical small areas including specialized geographies such as Primary Care Service Areas (PCSAs) are used to measure primary care relevant outcomes and services, or to target interventions. PCSAs are small areas, the majority of patients resident in which obtain their primary care services from within the geography. The extent of this self‐sufficiency of use is measured by the Localization Index (LI). PCSAs have been built in the US, Australia and Switzerland using an allocation algorithm, which, while simple and easy to implement, may require the use of various ad‐hoc parameters. In this article we propose an optimization based approach to creating PCSAs, ‐ an approach which has previously been used to generate labour flow regions in Ireland. The approach is data driven, thus requiring a minimal number of ad‐hoc parameters. We compared the resulting PCSAs (or `rPCSAs') with PCSAs generated using the traditional allocation algorithm. We found that rPCSAs were generally larger, offered greater LIs and reflected patient travel patterns better than traditional PCSAs. Accounting for the larger size of rPCSAs showed that rPCSAs offered better LIs than similar sized traditional PCSAs.  相似文献   
18.
A fully coupled meshfree algorithm is proposed for numerical analysis of Biot’s formulation. Spatial discretization of the governing equations is presented using the Radial Point Interpolation Method (RPIM). Temporal discretization is achieved based on a novel three-point approximation technique with a variable time step, which has second order accuracy and avoids spurious ripple effects observed in the conventional two-point Crank Nicolson technique. Application of the model is demonstrated using several numerical examples with analytical or semi-analytical solutions. It is shown that the model proposed is effective in simulating the coupled flow deformation behaviour in fluid saturated porous media with good accuracy and stability irrespective of the magnitude of the time step adopted.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号