首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   3篇
  国内免费   4篇
测绘学   7篇
大气科学   8篇
地球物理   28篇
地质学   58篇
海洋学   4篇
天文学   8篇
综合类   2篇
自然地理   3篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   5篇
  2019年   2篇
  2018年   3篇
  2017年   11篇
  2016年   4篇
  2015年   2篇
  2014年   13篇
  2013年   15篇
  2012年   4篇
  2011年   6篇
  2010年   6篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1997年   1篇
  1994年   1篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
61.
Unprecedented precipitation along with heavy falls occurred over many parts of India from 28th February to 2nd March 2015. Many of the stations of northwest and central India received an all time high 24 hr cumulative precipitation of March during this period. Even the national capital, New Delhi, broke all the previous historical 24 hr rainfall records of the last 100 years to the rainfall record in March 2015. Due to this event, huge loss to agricultural and horticultural crops occurred in several parts of India. In the present study, an attempt is made to understand the various meteorological features associated with this unprecedented precipitation event over India. It occurred due to the presence of an intense western disturbance (WD) over Afghanistan and neighbouring areas in the form of north–south oriented deep trough in westerlies in middle and upper tropospheric levels with its southern end deep in the Arabian Sea, which pumped huge moisture feed over Indian region. Also, there was a jet stream with core wind speed up to 160 knots that generated high positive divergence at upper tropospheric level over Indian region; along with this there was high magnitude of negative vertical velocity and velocity convergence were there at middle tropospheric level. It caused intense upward motion and forced lower levels air to rise and strengthen the lower levels cyclonic circulations (CCs)/Lows. Moreover, the induced CCs/Lows at lower tropospheric levels associated with WD were more towards south of its normal position. Additionally, there was wind confluence over central parts of India due to westerlies in association with WD and easterlies from anticyclone over north Bay of Bengal. Thus, intense WD along with wind confluence between westerlies and easterlies caused unprecedented precipitation over India during the 1st week of March 2015.  相似文献   
62.
The Bhagirathi River, a proglacial melt water stream of the Gangotri Glacier, is the principal source of the Ganges river system. The upper part of the basin lies in the high altitude region of the Garhwal Himalayas and is extensively covered by glaciers. We provide hydro‐meteorological insight into a severe storm that produced unusual high rains in June 2000 in the uppermost part of the Bhagirathi River. This storm was concentrated upstream of Gangotri town and triggered landslides/rockslides at several locations between the glacier snout and Gangotri town. One of the major rockslides blocked the Bhagirathi River at Bhujbas, about 3 km downstream of the Gangotri Glacier snout, creating an artificial lake at this location. High stream flow in the river, generated by rapid runoff response from mountain slopes along with melt runoff from the glacier, quickly increased the level of water stored in the artificial lake. Daily rainfall in this region rarely exceeds 10 mm, while total rainfall during this 6‐day storm was 131·5 mm. This unusual rain event occurred during the tourist season in June, consequently trapping a large number of tourists and vendors in this area. Sudden release of stored water generated floods that created havoc downstream of the artificially created lake. This paper presents the hydrological and meteorological information related to such an unusual and devastating event observed in the high altitude region of the Himalayas. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
63.
Horizontal surface visibility range, one of the simplest measures of local atmospheric pollution, is critical for aviation, surface transport besides long-term impact on human health and climate. Long-term observations from multiple stations (including airports) across the world show statistically significant decline in visibility. We have studied climatology and trends of morning poor visibility days (PVD, visibility <4 km) and afternoon good visibility days (GVD, visibility >10 km) based on 279 surface meteorological stations well distributed over India for the period 1961–2008. During last 5 decades, all India averaged range of annual morning PVD has increased from 6.7 to 27.3 % days, while the range of afternoon GVD has decreased from 76.1 to 30.6 % days. Annually, the morning PVD increased significantly at 3.3 % days per decade, and the afternoon GVD declined significantly at ?8.6 % days per decade. Seasonally, the highest increase in morning PVD has occurred in winter (+4.3 % days per decade), while post-monsoon has the highest decrease in afternoon GVD (?9.2 % days per decade). In spatial distribution, visibility has decreased nationwide especially over Indo-Gangetic (IG) plains, central, east and northeast India which is due to increased wintertime fog, water vapor and aerosol loading. The IG plains suffer from increased fog or smog and aerosol loading during wintertime. Long-term visibility impairment over India is visible through increasing morning PVD (decreasing GVD) and decreasing afternoon GVD (increasing PVD) which are spatially well correlated with increasing relative humidity and decreasing wind speed (seasonal).  相似文献   
64.
Future changes of terrestrial ecosystems due to changes in atmospheric CO2 concentration and climate are subject to a large degree of uncertainty, especially for vegetation in the Tropics. Here, we evaluate the natural vegetation response to projected future changes using an improved version of a dynamic vegetation model (CLM-CN-DV) driven with climate change projections from 19 global climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). The simulated equilibrium vegetation distribution under historical climate (1981–2000) has been compared with that under the projected future climate (2081–2100) scenario for Representative Concentration Pathway 8.5 (RCP8.5) to qualitatively assess how natural potential vegetation might change in the future. With one outlier excluded, the ensemble average of vegetation changes corresponding to climates of 18 GCMs shows a poleward shift of forests in northern Eurasia and North America, which is consistent with findings from previous studies. It also shows a general “upgrade” of vegetation type in the Tropics and most of the temperate zones, in the form of deciduous trees and shrubs taking over C3 grass in Europe and broadleaf deciduous trees taking over C4 grasses in Central Africa and the Amazon. LAI and NPP are projected to increase in the high latitudes, southeastern Asia, southeastern North America, and Central Africa. This results from CO2 fertilization, enhanced water use efficiency, and in the extra-tropics warming. However, both LAI and NPP are projected to decrease in the Amazon due to drought. The competing impacts of climate change and CO2 fertilization lead to large uncertainties in the projection of future vegetation changes in the Tropics.  相似文献   
65.
The efficient operation of a multipurpose reservoir requires information on high and low flows. However, analyses of inflows for high flows and for low flows are typically done independently. In this paper, we considered the joint dependence of the low flow on the preceding high flow volume and duration for the wet season in the Three Gorges region of the Yangtze River Basin in China. High flow volume and duration were found to have a strong association with the annual minimum 7-day flow in Cuntan, Wanxian, and Yichang stations. Furthermore, we identified the Arctic Oscillation, Pacific Decadal Oscillation, and snow cover in the Tibetan Plateau to have statistically significant teleconnections with the annual minimum 7-day flow. Bayesian models that consider a different level of pooling of the site by site regressions were then developed for the annual minimum 7-day flow conditional on the climate indices and high flow volume (or duration). The full pooling model performed best, suggesting that a homogeneous regional response is best identified given the global climate predictors. Statistics such as the deviance information criterion and reduction of error, coefficient of efficiency, and coverage rate under cross validation indicate the good performance of the model. Snow cover in the western Tibetan Plateau and high flow volume were identified as the most influential factors of the annual minimum 7-day flow through their impact on water storage in the basin. Recent simulations since June 2003, when the Three Gorges Dam operation started, were used to analyse the effect of dam operation on the annual minimum 7-day flow. A comparison of observations and predictions during the post-dam period demonstrated that the dam operation effectively modifies the annual minimum 7-day flow period to have higher flows.  相似文献   
66.
ABSTRACT

In the bridge design specifications of the American Association of State Highway and Transportation Officials (AASHTO) using the Load and Resistance Factor Design (LRFD) method, the loads and resulting force effects are given two-letter designations, e.g. “SE” for “force effects due to settlement”. The SE load factor is used to develop factored values of the induced force effects such as moments and shears in a bridge structure due to foundation movements. In 2018 AASHTO committees voted to adopt calibrated values of the SE load factors that account for the uncertainty in predicted foundation movements from different analytical methods. However, additional uncertainty can occur in the differential settlements. This paper explores the additional uncertainty in differential settlements of bridge foundations and retaining walls using the datasets for two analytical methods that were used by AASHTO to develop the SE load factors for foundation settlement. Normalised probability exceedance charts (NPECs), that integrate the concept of reliability index and data correlation, have been developed and their application in bridge and wall design process is discussed for a variety of scenarios. Guidance is provided for the practical implementation of differential settlement in bridge analysis through an example problem.  相似文献   
67.
Quaternary alluvium, ranging in thickness from a few to 100 meters underlain by Precambrian rocks of metamor-phic and igneous origin, constitutes an important source of ground water in Wadi Al-Yammaniyah, Saudi Arabia. The purpose of this report is to assess the hydraulic properties, quality of water, and estimated change in storage in waterbearing rocks in the area. The results of eight pumping tests carried out in hand-dug, large-diameter wells, indicate that the hydraulic conductivity of the alluvial aquifer ranges from 5.6 × 10−5 to 1.85 × 10−3 cm/second (3.36 × 10−5 to 1.11 × 10−3 m/minute) and that its storativity varies from 8.23 × 10−2 to 1.17 × 10−1. The aquifer is replenished by sporadic but intensive rainfall of short duration. The present withdrawal is only about 10 percent of the annual recharge which is estimated at 52 × 106 m3. It is shown that there is a substantial potential for the future development of potable ground water which would be required for the development of the area.  相似文献   
68.
Quantitative evaluations of the impact of groundwater abstraction on recharge are rare. Over a period (1975??007) during which groundwater abstraction increased dramatically in the Bengal Basin, changes in net groundwater recharge in Bangladesh are assessed using the water-table fluctuation method. Mean annual groundwater recharge is shown to be higher (300??00?mm) in northwestern and southwestern areas of Bangladesh than in southeastern and northeastern regions (<100?mm) where rainfall and potential recharge are greater. Net recharge in many parts of Bangladesh has increased substantially (5??5?mm/year between 1985 and 2007) in response to increased groundwater abstraction for irrigation and urban water supplies. In contrast, net recharge has slightly decreased (??.5 to ???mm/year) in areas where groundwater-fed irrigation is low (<30% of total irrigation) and where abstraction has either decreased or remained unchanged over the period of 1985??007. The spatio-temporal dynamics of recharge in Bangladesh illustrate the fundamental flaw in definitions of “safe yield??based on recharge estimated under static (non-pumping) conditions and reveal the areas where (1) further groundwater abstraction may increase actual recharge to the shallow aquifer, and (2) current groundwater abstraction for irrigation and urban water supplies is unsustainable.  相似文献   
69.
Ocean Dynamics - The present study focuses on the variability of subsurface ocean temperature and associated planetary waves (oceanic Kelvin and Rossby waves) in the Indian Ocean during the boreal...  相似文献   
70.
Summary . This paper presents the numerical computation of the results previously obtained by the author through a scattering matrix formulation (together with plane wave and variational approximations) which describes the diffraction of plane, harmonic, monochromatic Love waves incident normally (from either side) upon the plane of discontinuity in a structure consisting of a half-space with a surface step — an idealized model of a continental margin. Magnitudes of reflection and transmission coefficients are computed numerically for different frequencies for a model which has been considered previously by Knopoff & Hudson and also by Alsop in their studies of the same problem. The results obtained under the plane wave approximation are compared with those obtained under the variational approximation in order to assess the effects of the body-wave contributions. Finally, the results of both approximations are compared with those obtained by previous authors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号