首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   472篇
  免费   7篇
  国内免费   10篇
测绘学   32篇
大气科学   23篇
地球物理   77篇
地质学   207篇
海洋学   11篇
天文学   120篇
综合类   9篇
自然地理   10篇
  2022年   18篇
  2021年   15篇
  2020年   14篇
  2019年   11篇
  2018年   23篇
  2017年   29篇
  2016年   25篇
  2015年   17篇
  2014年   30篇
  2013年   34篇
  2012年   25篇
  2011年   25篇
  2010年   22篇
  2009年   14篇
  2008年   7篇
  2007年   14篇
  2006年   16篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   10篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   6篇
  1983年   7篇
  1982年   3篇
  1981年   2篇
  1980年   7篇
  1979年   6篇
  1978年   7篇
  1976年   3篇
  1975年   5篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1971年   6篇
  1970年   4篇
排序方式: 共有489条查询结果,搜索用时 15 毫秒
71.
This paper deals with detailed analysis of the fiasco created by the Tehri High Dam in Uttarakhand, India, particularly in terms of resettlement and rehabilitation of the local inhabitants. Aspects pertaining to the environmental issues are also discussed. Currently, the river valleys in Uttarakhand state of India are the targets of increasing hydroelectric projects. Virtually all rivers are being exploited for generating environmental friendly power. Having being learned the hard lesson from Tehri Dam, it has been decided to opt for such schemes in which comparatively little submergence and tempering with the fragile eco-systems is involved.However, our observations suggest that even in such schemes if due care is not taken they may turn out to be a failure.  相似文献   
72.
Sea surface temperature (SST) variability over the Bay of Bengal (BoB) has the potential to trigger deep moist convection thereby affecting the active-break cycle of the monsoons. Normally, during the summer monsoon season, SST over the BoB is observed to be greater than 28°C which is a pre-requisite for convection. During June 2009, satellite observations revealed an anomalous basin-wide cooling and the month is noted for reduced rainfall over the Indian subcontinent. In this study, we analyze the likely mechanisms of this cooling event using both satellite and moored buoy observations. Observations showed deepened mixed layer, stronger surface currents, and enhanced heat loss at the surface in the BoB. Mixed layer heat balance analysis is carried out to resolve the relative importance of various processes involved. We show that the cooling event is primarily induced by the heat losses at the surface resulting from the strong wind anomalies, and advection and vertical entrainment playing secondary roles.  相似文献   
73.
Closed form analytical expressions of stresses and displacements at any field point due to a very long dip-slip fault of finite width buried in a homogeneous, isotropic elastic half-space, are presented. Airy stress function is used to derive the expressions of stresses and displacements which depend on the dip angle and depth of the upper edge of the fault. The effect of dip angle and depth of the upper edge of the fault on stresses and displacements is studied numerically and the results obtained are presented graphically. Contour maps for stresses and displacements are also presented. The results of Rani and Singh (1992b) and Freund and Barnett (1976) have been reproduced.  相似文献   
74.
An innovative approach for regionalizing the 3‐D effective porosity field is presented and applied to two large, overexploited, and deeply weathered crystalline aquifers located in southern India. The method derives from earlier work on regionalizing a 2‐D effective porosity field in that part of an aquifer where the water table fluctuates, which is now extended over the entire aquifer using a 3‐D approach. A method based on geological and geophysical surveys has also been developed for mapping the weathering profile layers (saprolite and fractured layers). The method for regionalizing 3‐D effective porosity combines water table fluctuation and groundwater budget techniques at various cell sizes with the use of satellite‐based data (for groundwater abstraction), the structure of the weathering profile, and geostatistical techniques. The approach is presented in detail for the Kudaliar watershed (983 km2) and tested on the 730 km2 Anantapur watershed. At watershed scale, the effective porosity of the aquifer ranges from 0.5% to 2% in Kudaliar and between 0.3% and 1% in Anantapur, which agrees with earlier works. Results show that (a) depending on the geology and on the structure of the weathering profile, the vertical distribution of effective porosity can be very different and that the fractured layers in crystalline aquifers are not necessarily characterized by a rapid decrease in effective porosity and (b) that the lateral variations in effective porosity can be larger than the vertical ones. These variations suggest that within a same weathering profile, the density of open fractures and/or degree of weathering in the fractured zone may significantly vary from a place to another. The proposed method provides information on the spatial distribution of effective porosity that is of prime interest in terms of flux and contaminant transport in crystalline aquifers. Implications for mapping groundwater storage and scarcity are also discussed, which should help in improving groundwater resource management strategies.  相似文献   
75.
Morpho-tectonic study plays an important role in deciphering the effects of tectonic activity in the geomorphic evolution of the drainage basins.Romushi watershed forms one of the major watersheds of the intermontane Karewa Basin of Kashmir Valley.The Karewa sediments are characterized by glacio-fluvio-lacustrine deposits capped by the aeolian loess.The geomorphic,morphometric and lithostratigraphic studies of these cap deposits have been carried out to elucidate the effect of tectonics on the geomorphic evolution of Romushi Watershed.Geomorphic mapping was carried out using GPS measurements,DEM at 30m resolution,Topographic Position Index(TPI) model,topographic maps,LANDSAT TM Imagery and field data.Morphometric and morphotectonic analyses in GIS environment were used to calculate various geomorphic indices(Mountain Front Sinuosity Index,Bifurcation Ratio,Asymmetry Factor,River Profile,etc).These indices reveal that the tectonic uplift observed in the region due to Himalayan orogeny coupled with mass movement and aeolian deposition have dominated the landscape evolution of intermontane Karewa Basin of Kashmir throughout the Late Quaternary Period.Additional data from lithostratigraphic measurements were analyzed to understand the geomorphic evolution of intermontane Karewa Basin.The data revealed that the basin has experienced differential uplift and erosion rates from time to time in the geological past.This was corroborated by the results from the morphometric and morphotectonic analysis.  相似文献   
76.
Traditionally seismic design of structures supported on piled raft foundation is performed by considering fixed base conditions, while the pile head is also considered to be fixed for the design of the pile foundation. Major drawback of this assumption is that it cannot capture soil-foundation-structure interaction due to flexibility of soil or the inertial interaction involving heavy foundation masses. Previous studies on this subject addressed mainly the intricacy in modelling of dynamic soil structure interaction(DSSI) but not the implication of such interaction on the distribution of forces at various elements of the pile foundation and supported structure. A recent numerical study by the authors showed significant change in response at different elements of the piled raft supported structure when DSSI effects are considered. The present study is a limited attempt in this direction, and it examines such observations through shake table tests. The effect of DSSI is examined by comparing dynamic responses from fixed base scaled down model structures and the overall systems. This study indicates the possibility of significant underestimation in design forces for both the column and pile if designed under fixed base assumption. Such underestimation in the design forces may have serious implication in the design of a foundation or structural element.  相似文献   
77.
78.
A study on the sedimentary facies characterization and depositional environment interpretations for the K#Field (K-Oil Field) in Cambay petroleum basin of western onshore, India was conducted based on the sub-surface data from drilled wells, including well logs, borehole images, cores and the regional knowledge of the basin. In this work, an effort is made to integrate the current data from seismics and well logging, to study and analyze its depositional environments and establish the petroleum systems. The study regions for the present work are K45 and K48 blocks. The target strata includes 2 oil-bearing formations of Paleogene, which is about 3600 ft; they are M#Fm (M-Formation) of the Eocene and N#Fm (N-Formation) of Oligocene, subdivided into 11 zones. The sediment fill is mostly of Tertiary. The research attempts to decipher the oil - depositional source correlation problems of the basin. Sedimentary models were established referring to the core analysis, core photographs and well logs. Reservoir and heterogeneity study included reservoir lithology features, physical properties and pore structure features.Well facies analysis of oil well WELL-0297 and WELL-0129 was done and the results were analyzed for further drilling of new wells for oil and gas exploration. The study found that the Eocene, Oligocene, Miocene and Paleogene are fluviatile facies sand and mud interbed sediment with the thickness 2000-4000 ft, which are main oil-bearing formations in these areas. Studies concluded that the fluvial reservoirs of the K#Field are characterized by large variations from laterally extensive bodies with good interconnectedness and high net-to-gross ratios, multi-storey ribbon bodies with poor interconnections and low net-to-gross ratios.  相似文献   
79.
The present study analyzes the built-up expansion of Ranchi urban agglomeration over a period of about 8 decades from 1927–2005. Satellite images and topographical maps were used to evaluate land use dynamics during these periods. Built-up growth of 473.7% during 1927–2005 was primarily at the expense of agricultural land along with reduction of natural water bodies reflects negative impacts of built-up expansion, which increased many folds in recent decades. The built-up growth is also analyzed with reference to population growth, land consumption rate and land transformation. The land loss due to increasing built-up growth of Ranchi were compared with other capital regions and cities along with population increase to provide insight into the possible scenario of built-up expansion in Ranchi urban area.  相似文献   
80.
The aim of the present study is to understand the impact of oceanic heat potential in relation to the intensity of tropical cyclones (TC) in the Bay of Bengal during the pre-monsoon (April–May) and post-monsoon (October–November) cyclones for the period 2006–2010. To accomplish this, the two-layer gravity model (TLGM) is employed to estimate daily tropical cyclone heat potential (TCHP) utilizing satellite altimeter data, satellite sea surface temperature (SST), and a high-resolution comprehensive ocean atlas developed for Indian Ocean, subsequently validated with in situ ARGO profiles. Accumulated TCHP (ATCHP) is estimated from genesis to the maximum intensity of cyclone in terms of minimum central pressure along their track of all the cyclones for the study period using TLGM generated TCHP and six-hourly National Centre for Environmental Prediction Climate Forecast System Reanalysis data. Similarly, accumulated sea surface heat content (ASSHC) is estimated using satellite SST. In this study, the relationship between ATCHP and ASSHC with the central pressure (CP) which is a function of TC intensity is developed. Results reveal a distinct relationship between ATCHP and CP during both the seasons. Interestingly, it is seen that requirement of higher ATCHP during pre-monsoon cyclones is required to attain higher intensity compared to post-monsoon cyclones. It is mainly attributed to the presence of thick barrier layer (BL) resulting in higher enthalpy fluxes during post-monsoon period, where as such BL is non-existent during pre-monsoon period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号