首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   8篇
大气科学   7篇
地球物理   60篇
地质学   44篇
海洋学   42篇
天文学   31篇
自然地理   5篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   6篇
  2014年   7篇
  2013年   4篇
  2012年   7篇
  2011年   8篇
  2010年   11篇
  2009年   9篇
  2008年   9篇
  2007年   9篇
  2006年   7篇
  2005年   9篇
  2004年   8篇
  2003年   9篇
  2002年   4篇
  2001年   6篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   8篇
  1991年   1篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1974年   1篇
  1964年   1篇
排序方式: 共有189条查询结果,搜索用时 15 毫秒
181.
The subsurface counter current beneath the Tsushima Warm Current is simulated using a three-dimensional circulation model. The model well reproduces the counter current beneath the Tsushima Warm Current on the shelf break. The counter current appears as nearshore parts of the subsurface clockwise circulations from spring to early winter. The clockwise circulations are separated by developed shelves such as the Oki Spur and the Noto Peninsula, thus the counter current is not a continuous flow along the Japanese coast in this model. The vertical structure of the counter current can be explained by a density structure with the thermal wind relationship. The permanent and seasonal pycnoclines form mutually opposite horizontal density gradients near the Japanese coast in summer. Such a density structure results in a speed maximum of the counter current away from the bottom. It is remarkable that the second baroclinic mode is dominant in nearshore parts of the subsurface clockwise circulations in summer, which are attributed to the density structure. Similar density structures are also found in some coastal regions of the world oceans where subsurface counter currents are expected.  相似文献   
182.
The levels of PM.25 PAHs at Mt. Halla site, Jeju Island, a background site in Korea were observed between March 1999 and March 2002. A seasonal variation was observed for the particulate PAHs concentrations with high levels during cold season similar to Gosan, a nearby coastal background site, due to the seasonal variations of fossil fuel usage in Asia. The total average concentration of ambient particulate PAHs was 404 ± 579 pg m 3, about one order lower than the ambient level at Gosan. However, the ratios of the anthropogenic inorganic ion concentrations between Mt. Halla and Gosan were smaller, 1.5 for non sea-salt (nss) sulfate and 2.7 for nitrate. Two possible explanations for these characteristics are (1) two sites measured different air parcels and/or (2) the effect of local emissions were different at two sites. Based on the Bep/BaP ratio result, upper air wind direction data, backward trajectory analysis, and LIDAR measurement data at Gosan, it was found that the degree of the effects of local emissions to the sampling sites be the major reason for the different PAHs levels at two sites though, in some cases, the air parcels arriving at Mt. Halla were different from those arriving at Gosan. For secondary aerosol such as nss sulfate, the lower concentration difference indicates both site are affected by regional transport. It points that the measurement result for directly emitted species such as PAHs at Gosan might be significantly influenced by local emissions.  相似文献   
183.
We extend the formalism for the calculation of the relativistic corrections to the Sunyaev–Zel'dovich effect for clusters of galaxies and include the multiple scattering effects in the isotropic approximation. We present the results of the calculations by the Fokker–Planck expansion method as well as by the direct numerical integration of the collision term of the Boltzmann equation. The multiple scattering contribution is found to be very small compared with the single scattering contribution. For high-temperature galaxy clusters of     the ratio of both the contributions is −0.2 per cent in the Wien region. In the Rayleigh–Jeans region the ratio is −0.03 per cent. Therefore the multiple scattering contribution is safely neglected for the observed galaxy clusters.  相似文献   
184.
185.
Most of the slope failure disasters in a humid area such as that of Japan are caused by heavy rain. However, even for the case of heavy rainfall that occurs once in every 10 years, total area of slope failures seldom exceeds 10% of a watershed. From this background, we focused on the vein-like groundwater flows that increase pore-water pressure, and clarified the relationship between distributions of slope failures and groundwater veins. In this study, a 1-m-depth ground temperature survey and water-chemistry analyses at springs and boreholes were conducted in Zentoku area of Shikoku Island, southwestern Japan, to grasp the distribution of groundwater veins and their sources. Subsequently, slope-stability was analyzed to investigate the relationship between groundwater veins and slope failures at study sites. These results lead to the following conclusions: The slope failures appear to concentrate around shallow groundwater veins and groundwater veins rising from deep layers. This means that slope failures caused by these groundwater veins in addition to rainfall. Two types of groundwater originate in the deep layers: one has short storage time as indicated by the fact that dissolved substances are low; the other is stored for a lengthy period as noted by a high concentration of dissolved substances. By combining the results of stability analyses and distribution of groundwater veins, it is suggested that prediction of zones with high potential for slope failure can be more accurate.  相似文献   
186.
The role of aqueous fluid in fracturing in subducting slabs was investigated through a series of deformation experiments on dunite that was undersaturated (i.e., fluid-free) or saturated with water (i.e., aqueous-fluid bearing) at pressures of 1.0–1.8 GPa and temperatures of 670–1250 K, corresponding to the conditions of the shallower regions of the double seismic zone in slabs. In situ X-ray diffraction, radiography, and acoustic emissions (AEs) monitoring demonstrated that semi-brittle flow associated with AEs was dominant and the creep/failure strength of dunite was insensitive to the dissolved water content in olivine. In contrast, aqueous fluid drastically decreased the creep/failure strength of dunite (up to ~?1 GPa of weakening) over a wide range of temperatures in the semi-brittle regime. Weakening of the dunite by the aqueous fluid resulted in the reduction of the number of AE events (i.e., suppression of microcracking) and shortening of time to failure. The AE hypocenters were located at the margin of the deforming sample while the interior of the faulted sample was aseismic (i.e., aseismic semi-brittle flow) under water-saturated conditions. A faulting (slip rate of ~?10?3 to 10?4 s?1) associated with a large drop of stress (Δσ?~?0.5 to 1 GPa) and/or pressure (ΔP?~?0.5 GPa) was dominant in fluid-free dunite, while a slow faulting (slip rate?<?8?×?10?5 s?1) without any stress/pressure drop was common in water-saturated dunite. Aseismic semi-brittle flow may mimic silent ductile flow under water-saturated conditions in subducting slabs.  相似文献   
187.
Multiple‐layered tsunami deposits have been frequently reported from coastal stratigraphic sequences, but the formation processes of these layers remain uncertain. A terrestrial sandy deposit formed by the 2004 Indian Ocean Tsunami was investigated at Ban Nam Kem, southern Thailand. Four internal layers induced by two tsunami waves were identified in the tsunami deposit. Sedimentary structures indicated that two units were formed by run‐up currents caused by the tsunami and the other two units were deposited by the backwash flows. Graded bedding was common in the layers, but inverse grading was observed at limited intervals on the surveyed transects. The characteristics of the multiple‐layered tsunami deposit vary remarkably over a very short distance (<1 m) in response to the local topography. Remarkable asymmetries in thickness and grain‐size distribution are recognized between the run‐up and backwash flow deposits. On the basis of the interpretation of sedimentary structures, the formation process of the multiple‐layered tsunami deposit observed in this study can be explained in a schematic model as the modification of the ideal tsunami sequence by local erosion and the asymmetric hydraulic properties of tsunami waves, such as the maximum shear velocity and the heterogeneity of the flow velocity field.  相似文献   
188.
We performed a series of wind-tunnel experiments under neutral conditions in order to create a comprehensive database of scalar transfer coefficients for street surfaces using regular block arrays representing an urban environment. The objective is to clarify the geometric dependence of scalar transfer phenomena on rough surfaces. In addition, the datasets we have obtained are necessary to improve the modelling of scalar transfer used for computational simulations of urban environments; further, we can validate the results obtained by numerical simulations. We estimated the scalar transfer coefficients using the salinity method. The various configurations of the block arrays were designed to be similar to those used in a previous experiment to determine the total drag force acting on arrays. Our results are summarized as follows: first, the results for cubical arrays showed that the transfer coefficients for staggered and square layouts varied with the roughness packing density. The results for the staggered layout showed the possibility that the mixing effect of air can be enhanced for the mid-range values of the packing density. Secondly, the transfer coefficients for arrays with blocks of non-uniform heights were smaller than those for arrays with blocks of uniform height under conditions of low packing density; however, as the packing density increased, the opposite tendency was observed. Thirdly, the randomness of rotation angles of the blocks in the array led to increasing values of the transfer coefficients under sparse packing density conditions when compared with those for cubical arrays.  相似文献   
189.
Although we know that rainfall interception (the rain caught, stored, and evaporated from aboveground vegetative surfaces and ground litter) is affected by rain and throughfall drop size, what was unknown until now is the relative proportion of each throughfall type (free throughfall, splash throughfall, canopy drip) beneath coniferous and broadleaved trees. Based on a multinational data set of >120 million throughfall drops, we found that the type, number, and volume of throughfall drops are different between coniferous and broadleaved tree species, leaf states, and timing within rain events. Compared with leafed broadleaved trees, conifers had a lower percentage of canopy drip (51% vs. 69% with respect to total throughfall volume) and slightly smaller diameter splash throughfall and canopy drip. Canopy drip from leafless broadleaved trees consisted of fewer and smaller diameter drops (D50_DR, 50th cumulative drop volume percentile for canopy drip, of 2.24 mm) than leafed broadleaved trees (D50_DR of 4.32 mm). Canopy drip was much larger in diameter under woody drip points (D50_DR of 5.92 mm) than leafed broadleaved trees. Based on throughfall volume, the percentage of canopy drip was significantly different between conifers, leafed broadleaved trees, leafless broadleaved trees, and woody surface drip points (p ranged from <0.001 to 0.005). These findings are partly attributable to differences in canopy structure and plant surface characteristics between plant functional types and canopy state (leaf, leafless), among other factors. Hence, our results demonstrating the importance of drop‐size‐dependent partitioning between coniferous and broadleaved tree species could be useful to those requiring more detailed information on throughfall fluxes to the forest floor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号