全文获取类型
收费全文 | 429篇 |
免费 | 10篇 |
国内免费 | 3篇 |
专业分类
测绘学 | 3篇 |
大气科学 | 18篇 |
地球物理 | 110篇 |
地质学 | 104篇 |
海洋学 | 77篇 |
天文学 | 112篇 |
综合类 | 2篇 |
自然地理 | 16篇 |
出版年
2021年 | 5篇 |
2020年 | 6篇 |
2019年 | 12篇 |
2018年 | 2篇 |
2017年 | 12篇 |
2016年 | 7篇 |
2015年 | 8篇 |
2014年 | 23篇 |
2013年 | 14篇 |
2012年 | 15篇 |
2011年 | 16篇 |
2010年 | 23篇 |
2009年 | 23篇 |
2008年 | 24篇 |
2007年 | 18篇 |
2006年 | 26篇 |
2005年 | 14篇 |
2004年 | 15篇 |
2003年 | 8篇 |
2002年 | 16篇 |
2001年 | 12篇 |
2000年 | 9篇 |
1999年 | 9篇 |
1998年 | 10篇 |
1997年 | 8篇 |
1996年 | 4篇 |
1995年 | 5篇 |
1994年 | 6篇 |
1993年 | 9篇 |
1992年 | 4篇 |
1991年 | 2篇 |
1990年 | 6篇 |
1989年 | 2篇 |
1988年 | 4篇 |
1987年 | 9篇 |
1986年 | 5篇 |
1985年 | 3篇 |
1984年 | 5篇 |
1983年 | 5篇 |
1982年 | 3篇 |
1981年 | 5篇 |
1977年 | 6篇 |
1975年 | 2篇 |
1974年 | 4篇 |
1973年 | 5篇 |
1972年 | 3篇 |
1971年 | 2篇 |
1970年 | 2篇 |
1966年 | 1篇 |
1963年 | 1篇 |
排序方式: 共有442条查询结果,搜索用时 0 毫秒
281.
Major and trace element mineral/melt partition coefficients are presented for phases on the liquidus of fertile peridotite at 23-23.5 GPa and 2300 °C. Partitioning models, based on lattice-strain theory, are developed for cations in the ‘8-fold’ sites of majorite and Mg-perovskite. Composition-dependant partitioning models are made for cations in the 12-fold site of Ca-perovskite based on previously published data. Dmin/melt is extremely variable for many elements in Ca-perovskite and highly correlated with certain melt compositional parameters (e.g. CaO and Al2O3 contents). The 8-fold sites in Mg-perovskite and majorite generally have ideal site radii between 0.8 and 0.9 Å for trivalent cations, such that among rare-earth-elements (REE) Dmin/melt is maximum for Lu. Lighter REE become increasingly incompatible with increasing ionic radii. The 12-fold site in Ca-perovskite is larger and has an ideal trivalent site radius of ∼1.05 Å, such that the middle REE has the maximum Dmin/melt. Trivalent cations are generally compatible to highly compatible in Ca-perovskite giving it considerable leverage in crystallization models. Geochemical models based on these phase relations and partitioning results are used to test for evidence in mantle peridotite of preserved signals of crystal differentiation in a deep, Hadean magma ocean.Model compositions for bulk silicate Earth and convecting mantle are constructed and evaluated. The model compositions for primitive convecting mantle yield superchondritic Mg/Si and Ca/Al ratios, although many refractory lithophile element ratios are near chondritic. Major element mass balance calculations effectively preclude a CI-chondritic bulk silicate Earth composition, and the super-chondritic Mg/Si ratio of the mantle is apparently a primary feature. Mass balance calculations indicate that 10-15% crystal fractionation of an assemblage dominated by Mg-perovskite, but with minor amounts of Ca-perovskite and ferropericlase, from a magma ocean with model peridotite-based bulk silicate Earth composition produces a residual magma that resembles closely the convecting mantle.Partition coefficient based crystal fractionation models are developed that track changes in refractory lithophile major and trace element ratios in the residual magma (e.g. convecting mantle). Monomineralic crystallization of majorite or Mg-perovskite is limited to less than 5% before certain ratios fractionate beyond convecting mantle values. Only trace amounts of Ca-perovskite can be tolerated in isolation due to its remarkable ability to fractionate lithophile elements. Indeed, Ca-perovskite is limited to only a few percent in a deep mantle crystal assemblage. Removal from a magma ocean of approximately 13% of a deep mantle assemblage comprised of Mg-perovskite, Ca-perovskite and ferropericlase in the proportions 93:3:4 produces a residual magma with a superchondritic Ca/Al ratio matching that of the model convecting mantle. This amount of crystal separation generates fractionations in other refractory lithophile elements ratios that generally mimic those observed in the convecting mantle. Further, the residual magma is expected to have subchondritic Sm/Nd and Lu/Hf ratios. Modeling shows that up to 15% crystal separation of the deep mantle assemblage from an early magma ocean could have yielded a convecting mantle reservoir with 143Nd/144Nd and 176Hf/177Hf isotopic compositions that remain internal to the array observed for modern oceanic volcanic rocks. If kept in isolation, the residual magma and deep crystal piles would grow model isotopic compositions that are akin to enriched mantle 1 (EM1) and HIMU reservoirs, respectively, in Nd-Hf isotopic space. 相似文献
282.
孢粉记录的岱海盆地1500年以来气候变化 总被引:11,自引:9,他引:11
根据岱海盆地99A孔1.84m以上地层较高分辨率的孢粉资料,运用中国北方部分科属花粉-气候响应面定量恢复了岱海盆地1500aB.P.以来的七月平均气温和年均降水量。研究结果表明,岱海盆地的气候变化表现出明显的过渡带特征,1500aB.P.以来,七月平均气温除1500~1300aB.P.时段外,多低于现在;1500~980aB.P.岱海盆地的气候变化为温干-冷湿交替,980~400aB.P.以凉干-冷湿交替为特征,400aB.P.以来变为凉干-温湿的交替。980aB.P.以来,伴人植物草、荨麻花粉增加,表明人类活动加剧。是否是人类活动的加剧导致了400aB.P.以后岱海盆地气候变化格局的改变,值得进一步研究。 相似文献
283.
Further studies on the transport in sea water and accumulation in marine sediment of the radionuclides, released from a nuclear power plant, on Urazoko Bay, Fukui Prefecture were reported.The partition of radionuclides among the particle size fractions of a sediment sample indicated that the accumulation of60Co,137Cs and54Mn in the sediment were dominated substantially by the sorption on the particle surface in sea water, and the patterns of their sorption were considerably similar to each other.In regard to the60Co contamination of marine sediments in an area of about 13 km2 around the nuclear power plant, 60% of the60Co contamination were retained in Urazoko Bay, which occupies only 7% of the bottom surface of the region.It is clear that a part of60Co accumulated in the sediment of Urazoko Bay gradually moved to the outerward. 相似文献
284.
Numerical simulations of impacts involving porous bodies: II. Comparison with laboratory experiments
In this paper, we compare the outcome of high-velocity impact experiments on porous targets, composed of pumice, with the results of simulations by a 3D SPH hydrocode in which a porosity model has been implemented. The different populations of small bodies of our Solar System are believed to be composed, at least partially, of objects with a high degree of porosity. To describe the fragmentation of such porous objects, a different model is needed than that used for non-porous bodies. In the case of porous bodies, the impact process is not only driven by the presence of cracks which propagate when a stress threshold is reached, it is also influenced by the crushing of pores and compaction. Such processes can greatly affect the whole body's response to an impact. Therefore, another physical model is necessary to improve our understanding of the collisional process involving porous bodies. Such a model has been developed recently and introduced successfully in a 3D SPH hydrocode [Jutzi, M., Benz, W., Michel, P., 2008. Icarus 198, 242-255]. Basic tests have been performed which already showed that it is implemented in a consistent way and that theoretical solutions are well reproduced. However, its full validation requires that it is also capable of reproducing the results of real laboratory impact experiments. Here we present simulations of laboratory experiments on pumice targets for which several of the main material properties have been measured. We show that using the measured material properties and keeping the remaining free parameters fixed, our numerical model is able to reproduce the outcome of these experiments carried out under different impact conditions. This first complete validation of our model, which will be tested for other porous materials in the future, allows us to start addressing problems at larger scale related to small bodies of our Solar System, such as collisions in the Kuiper Belt or the formation of a family by the disruption of a porous parent body in the main asteroid belt. 相似文献
285.
We present a new method for the decomposition of silicate rocks by flux‐free fusion in preparation for whole‐rock trace element determination (Sc, Rb, Sr, Y, Zr, Nb, Cs, Ba, rare earth elements and Hf) that is especially applicable to zircon‐bearing felsic rocks. The method was verified by analyses of RMs of mafic (JB‐1a, JB‐2, JGb‐1) and felsic rocks (JG‐3, JR‐3, JSd‐1, GSP‐2, G‐2). Pellets of powdered sample (up to 500 mg) without flux were weighed and placed in a clean platinum crucible. The samples were then fused in a Siliconit® tube furnace and quenched to room temperature. The optimum condition for the fusion of granitic rock was determined to be heating for 2–3 min at 1600 °C. The fused glass in the platinum crucible after heating was decomposed using HF and HClO4 in a Teflon® beaker. Decomposed and diluted sample solutions were analysed using a quadrupole inductively coupled plasma‐mass spectrometer. Replicate analyses (n = 4 or 5) of the RMs revealed that analytical uncertainties were generally < 3% for all elements except Zr and Hf (~ 6%) in JG‐3. These higher uncertainties may be attributed to sample heterogeneity. Our analytical results for the RMs agreed well with recommended concentrations and recently published concentrations, indicating complete decomposition of our rock samples during fusion. 相似文献
286.
Shigehisa Nakamura 《Journal of Oceanography》1977,33(1):47-53
By a model bay with a mouth and a narrow, an experiment on long period waves is carried out to discuss the behavior of the tsunamis and storm surges. Emphasis is placed on the analysis of the characteristics of the current velocities associated with the long period waves incoming through the mouth in terms of Ursell's parameter. 相似文献
287.
An artificial beach has been constructed compensating for losing of the natural one caused by the development of coastal area. In this paper, the hydraulic model tests are carried out to investigate the suction phenomenon on the artificial beach constituted of rubble mound breakwater with gravel and the reclaimed sand area. In addition, the numerical model for waves, structures and seabed interaction as well as the numerical method based on the u–p approximation of the Biot equations is developed for investigation of suction mechanism. After verification of the numerical models by comparing numerical results with experimental data, the numerical models are further used to clarify the detailed suction mechanism of the reclaimed sand. The factors that affect the suction phenomenon are examined experimentally and their critical values are presented. Also, it can be pointed out that the vertical discharge velocity as well as the volumetric strain around the still water level of the boundary between the breakwater and the beach gets up to the critical value, the reclaimed sand starts to flow out to the offshore, and it finally leads to caves and cave-ins in the reclaimed zone. 相似文献
288.
Kirk McIntosh Yosio Nakamura T.-K. Wang R.-C. Shih Allen Chen C.-S. Liu 《Tectonophysics》2005,401(1-2):23-54
We have used combined onshore and offshore wide-angle seismic data sets to model the velocity structure of the Taiwan arc–continent collision along three cross-island transects. Although Taiwan is well known as a collisional orogen, relatively few data have been collected that reveal the deeper structure resulting from this lithospheric-scale process. Our southern transect crosses the Hengchun Peninsula of southernmost Taiwan and demonstrates characteristics of incipient collision. Here, 11-km-thick, transitional crust of the Eurasian plate (EUP) subducts beneath a large, rapidly growing accretionary prism. This prism also overrides the N. Luzon forearc to the east as it grows. Just west of the arc axis there is an abrupt discontinuity in the forearc velocity structure. Because this break is accompanied by intense seismicity, we interpret that the forearc block is being detached from the N. Luzon arc and Philippine Sea plate (PSP) at this point. Our middle transect illustrates the structure of the developing collision. Steep and overturned velocity contours indicate probable large-scale thrust boundaries across the orogen. The leading edge of the coherent PSP appears to extend to beneath the east coast of Taiwan. Deformation of the PSP is largely limited to the remnant N. Luzon arc with no evidence of crustal thickening to the east in the Huatung basin. Our northern transect illustrates slab–continent collision—the continuing collision of the PSP and EUP as the PSP subducts. The collisional contact is below 20 km depths along this transect NE of Hualien. This transect shows elements of the transition from arc–continent collision to Ryukyu arc subduction. Both of our models across the Central Range suggest that the Paleozoic to Mesozoic basement rocks there may have been emplaced as thick, coherent thrust sheets. This suggests a process of partial continental subduction followed by intra-crustal detachment and buoyancy-aided exhumation. Although our models provide previously unknown structural information about the Taiwan orogen, our data do not define the deepest orogenic structure nor the structure of western Taiwan. Additional seismic (active and passive), geologic, and geodynamic modeling work must be done to fully define the structure, the active deformation zones, and the key geodynamic process of the Taiwan arc–continent collision. 相似文献
289.
Motion of a charged particle around a black hole immersed in magnetic field is calculated. It is shown that this motion has a chaotic property depending on initial parameters. 相似文献
290.
Friedrich Hörz Mark J. Cintala Thomas H. See Keiko Nakamura‐Messenger 《Meteoritics & planetary science》2009,44(9):1243-1264
Abstract— We conducted impact experiments into SiO2‐based aerogel of uniform density (0.02 g cm?3) with spherical corundum projectiles. The highly refractory nature and mechanical strength of corundum minimizes projectile deformation and continuous mass loss by ablation that might have affected earlier experiments with soda‐lime glass (SLG) impactors into aerogel targets. We find that corundum is a vastly superior penetrator producing tracks a factor of 2.5 longer, yet similar in diameter to those made by SLG. At velocities <4 km s?1 a cylindrical “cavity” forms, largely by melting of aerogel. The diameter and length of this cavity increase with velocity and impactor size, and its volume dominates total track volume. A continuously tapering, exceptionally long and slender “stylus” emerges from this cavity and makes up some 80–90% of the total track length; this stylus is characterized by solid‐state deformations. Tracks formed below 4 km s?1 lack the molten cavity and consist only of a stylus. Projectile residues recovered from a track's terminus substantially resemble the initial impactors at V > 4 km s?1, yet they display two distinct surfaces at higher velocities, such as a blunt, forward face and a well‐preserved, hemispherical trailing side; a pronounced, circumferential ridge of compressed and molten aerogel separates these two surfaces. Stringers and patches of melt flow towards the impactor's rear where they accumulate in a characteristic melt tip. SEM‐EDS analyses indicate the presence of Al in these melts at velocities as low as 5.2 km s?1, indicating that the melting point of corundum (2054 °C) was exceeded. The thermal model of aerogel impact by Anderson and Cherne (2008) suggests actual aerogel temperatures <5000 K at comparable conditions. We therefore propose that projectile melting occurs predominantly at those surfaces that are in contact with this very hot aerogel, at the expense of viscous heating and associated ablation. Exposure to superheated aerogel may be viewed as extreme form of “flash heating.” This seems consistent with observations from the Stardust mission to comet Wild 2, such as relatively pristine interiors of rather large, terminal particles, yet total melting of most fine‐grained dust components. 相似文献