首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   14篇
  国内免费   2篇
测绘学   5篇
大气科学   35篇
地球物理   63篇
地质学   121篇
海洋学   19篇
天文学   50篇
自然地理   16篇
  2022年   3篇
  2021年   6篇
  2020年   4篇
  2019年   3篇
  2018年   11篇
  2017年   4篇
  2016年   8篇
  2015年   9篇
  2014年   9篇
  2013年   26篇
  2012年   13篇
  2011年   18篇
  2010年   16篇
  2009年   18篇
  2008年   23篇
  2007年   14篇
  2006年   12篇
  2005年   16篇
  2004年   4篇
  2003年   10篇
  2002年   9篇
  2001年   7篇
  2000年   9篇
  1999年   3篇
  1998年   4篇
  1997年   6篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1948年   2篇
  1925年   1篇
排序方式: 共有309条查询结果,搜索用时 15 毫秒
61.
The West Eifel Volcanic Field comprises 98 maars, tuff rings, and scoria rings of volcanoes younger than 700 ka. Digital Terrain Models (DTMs) allow to automatically measure morphologic parameters of volcanic edifices such as slope angles, diameters, elevations, floor, and slope surface areas. Based on their morphological characteristics, we subdivided the West Eifel volcanoes into five morphometric groups which reflect different stages of erosion. Group I, II, and IV comprise clear ring-shaped structures. The difference between these groups is that a tephra ring is well preserved in Group I, partially preserved in Group II and absent in Group IV. The original shapes of Group III maars have been lost more substantially than in Groups I, II, or IV, but they nevertheless retain a negative shape (a depression) and have characteristic channel systems, which can be used as search criteria. Maar-diatremes of Group V are eroded down to their feeder pipes and form hills. In order to locate potential volcanic depressions that are likely to be maar volcanoes, we defined common search criteria such as circular negative landforms or particular drainage system patterns for all groups except the least well-preserved Group V. These criteria were taken as the basis for further processing of the DTM data. The first processing step consisted of constructing a residual relief calculated as the difference between a filtered (smoothed) topographic surface and the original DTM data. This identifies local topographic features. We propose a method for regulating the degree of smoothing which is based on filtering of local maxima according to their distance from a surface constructed from local minima. The previously defined search criteria for Groups I to IV such as specific ranges of curvature, slope, circularity, density of the drainage network were then applied to the residual relief in order to extract maar shapes. Not all criteria work equally well for all morphological groups. Combinations of multiple search criteria therefore yield the best results and efficiently identify most known maars. They also separate some probable new, hitherto unrecognized maars from a large number of other local depressions. We also compared the erosional state of maars to their absolute ages. Published estimates of erosion rates for maars in the French Massif Central suggest a general trend of erosion rates decreasing with time elapsed since eruption. However, this cannot explain the strongly varying ages for maars of the same morphometric group (i.e., similar preservation state) in the West Eifel Volcanic Field. The spatial distribution of the morphometric groups shows some regularity. For example, strongly eroded maars are concentrated in the Gerolstein area (where maar density is highest), whereas most well-preserved maars are located east of the Eifel North–South Depression (ENSD). Most maars affected by fluvial erosion lie near the Kyll and Kleine Kyll streams. These observations suggest differential recent uplift of the West Eifel Volcanic Field, with stronger uplift occurring west of the ENSD.  相似文献   
62.
63.
Cave air PCO2 at two Irish sites varied dramatically on daily to seasonal timescales, potentially affecting the timing of calcite deposition and consequently climate proxy records derived from stalagmites collected at the same sites. Temperature-dependent biochemical processes in the soil control CO2 production, resulting in high summer PCO2 values and low winter values at both sites. Large Large-amplitude, high-frequency variations superimposed on this seasonal cycle reflect cave air circulation. Here we model stalagmite growth rates, which are controlled partly by CO2 degassing rates from drip water, by considering both the seasonal and high-frequency cave air PCO2 variations. Modeled hourly growth rates for stalagmite CC-Bil from Crag Cave in SW Ireland reach maxima in late December (0.063 μm h− 1) and minima in late June/early July (0.033 μm h− 1). For well-mixed ‘diffuse flow’ cave drips such as those that feed CC-Bil, high summer cave air PCO2 depresses summer calcite deposition, while low winter PCO2 promotes degassing and enhances deposition rates. In stalagmites fed by well-mixed drips lacking seasonal variations in δ18O, integrated annual stalagmite calcite δ18O is unaffected; however, seasonality in cave air PCO2 may influence non-conservative geochemical climate proxies (e.g., δ13C, Sr/Ca). Stalagmites fed by ‘seasonal’ drips whose hydrochemical properties vary in response to seasonality may have higher growth rates in summer because soil air PCO2 may increase relative to cave air PCO2 due to higher soil temperatures. This in turn may bias stalagmite calcite δ18O records towards isotopically heavier summer drip water δ18O values, resulting in elevated calcite δ18O values compared to the ‘equilibrium’ values predicted by calcite–water isotope fractionation equations. Interpretations of stalagmite-based paleoclimate proxies should therefore consider the consequences of cave air PCO2 variability and the resulting intra-annual variability in calcite deposition rates.  相似文献   
64.
A fluorescent labelling method is presented as a new tool for the investigation of organic particle transport and biogenic carbon cycling processes in sandy littoral interstices at Lake Tegel, Berlin, Germany. Passive particle transport through the pore system was studied by in situ exposition of 2.4 μm monodisperse polymeric resin microparticles stained with 7-amino-4-methylcoumarin (AMC). Uptake of fluorescein-5-isothiocyanate (FITC)-labelled Chlorella vulgaris and fine particulate organic matter (FPOM) by the interstitial fauna was investigated in laboratory and field experiments. The major portion (>85%) of the FITC-labelled particles added to sediment cores was recovered from the topmost centimetre of sediment during the study period of 14 days. Uptake of FITC-labelled FPOM was observed in several benthic groups, e.g. chironomids, microcrustaceans, oligochaetes and tardigrads, whereas C. vulgaris was ingested by oligochaetes only. There is evidence to suggest that both are suitable materials for investigating the fragmentation and ingestion of organic material by herbivorous and detritivorous fauna. Field experiments with inert microparticles and FITC-labelled FPOM (<1 mm) prepared from dried alder leaves were carried out in plexiglass tubes as in situ whole core technique. Within the investigation period of two weeks, the transport of FPOM was restricted to the topmost 2–3 cm of sediment in conjunction with a distinct fragmentation to finer size classes with respect to increasing sediment depth. Vertical FPOM transport was hindered by a high interstitial concentration of natural POM and an intensive settlement of the interstices by algae (mainly epispammic algae, 65–96% of algae cell number) and extra-cellular polymeric substances (EPS), which formed a dense three-dimensional structure.  相似文献   
65.
Using observations with the ALOMAR SOUSY radar near Andenes (69.3°N, 16.0°E) from 1994 until 1997 polar mesosphere summer echoes (PMSE) have been investigated in dependence on geomagnetic K indices derived at the Auroral Observatory Tromsø (69.66°N, 18.94°E). During night-time and morning hours a significant correlation between the signal-to-noise ratio (SNR) of the radar results and the geomagnetic K indices could be detected with a maximum correlation near midnight. The correlation becomes markedly smaller in the afternoon and early evening hours with a minimum near 17 UT. This diurnal variation is in reasonable agreement with riometer absorption at Ivalo (68.55°N, 27.28°E) and can be explained by the diurnal variation of ionization due to precipitating high energetic particles. Therefore, a part of the diurnal PMSE variation is caused by this particle precipitation. The variability of the solar EUV variation, however, has no significant influence on the PMSE during the observation period.  相似文献   
66.
The occultation of 136 Tau on May 11, 1988 was observed at the Observatorium Hoher List. The ingress was recorded photoelectrically by the dual beam photometer while the egress was observed visually. A bona fide curve fitting reduction yielded a scale height differing from earlier p.e. occultation results and is in better agreement with theoretical expectations.  相似文献   
67.
An expressway-side soil profile 22 cm long was sampled from the grassland of the expressway linking Beijing and the Capital International Airport. Magnetic measurements, geochemical and multivariate statistic analyses were performed on the soil samples. The results reveal that the soil profile can be divided into two parts with significant difference in magnetic proxies and heavy metal concentration. The uppermost soil horizon (0–8 cm) represents the pollution-rich layer with higher concentration of ferrimagnetic phases and metallic elements. The values of xare very high with an average of 141.60 × 10−8 m3·kg−1 in the layer. We explain that the anthropogenic dust input from traffic is the predominant cause for strong signals of magnetic phases and heavy metals. Below the profile depth of 8 cm, there is minor pollution in the soil with lower concentration of magnetic minerals and heavy metals compared to the natural background values. χ remains quite stable and relatively low with an average of 49.44 × 10−8 m3·kg−1. S-ratio also generally decreases with depth, and it changes from 0.93 in the 0–8 cm layer to 0.87 below the depth of 8 cm. It indicates that the soil samples are overwhelmingly predominated by ferrimagnetic minerals in the upper part soil, while the contribution of imperfect antiferromagnetic components is stronger in the lower part. Rock magnetic experiments show MD magnetite as the main magnetic carrier both in the upper and lower parts. Themagnetic grain size in the upper part is, however, a bit coarser than that in the lower part. Cluster analysis shows a positive correlation between magnetic properties (χ, ARM, SIRM) and heavy metal pollutants of Pb, Zn, Cu. Fuzzy C-means cluster analysis can clearly help divide the soil profile into two different layers and distinguish their characteristics. It can be concluded that these magnetic concentration-related parameters can be used as proxies for pollution investigation in a fast, sensitive, low-cost and highly efficient approach to screening heavy metal pollution. __________ Translated from Quaternary Sciences, 2007, 27(6): 1113-1120 [译自:第四纪研究]  相似文献   
68.
69.
Demersal rockfish are the only fish species that have been found dead in significant numbers after major oil spills, but the link between oil exposure and effect has not been well established. After the 1989 Exxon Valdez oil spill in Prince William Sound, Alaska, several species of rockfish (Sebastes spp.) from oiled and reference sites were analyzed for hydrocarbon metabolites in bile (1989-1991) and for microscopic lesions (1990 and 1991). Biliary hydrocarbons consistent with exposure to Exxon Valdez oil were elevated in 1989, but not in 1990 or 1991. Significant microscopic findings included pigmented macrophage aggregates and hepatic megalocytosis, fibrosis, and lipid accumulation. Site differences in microscopic findings were significant with respect to previous oil exposure in 1991 (P=0.038), but not in 1990. However, differences in microscopic findings were highly significant with respect to age and species in both years (P<0.001). We conclude that demersal rockfish were exposed to Exxon Valdez oil in 1989, but differences in microscopic changes in 1990 and 1991 were related more to age and species differences than to previous oil exposure.  相似文献   
70.
This paper aims to simulate the kinematic evolution of a regional transect crossing the Northern Emirates in the northernmost part of the Semail Ophiolite and the Dibba zone, just south of the Musandam Platform exposures. The studied section comprises, from top to bottom and from inner to outer zones, (1) the erosional remnants of the Semail Ophiolite, mainly made up of serpentinized ultramafics in the west and gabbros in the east, (2) high-grade metamorphic rocks which are currently exposed in the core of a nappe anticline near Masafi, (3) far-travelled Hawasina basinal units and Sumeini paleo-slope units of the Dibba Zone, (4) parautochthonous platform carbonates, which are currently well exposed in the Musandam area, and (5) a flexural basin filled with uppermost Cretaceous to Neogene sediments. Two main compressional episodes are generally identified, resulting first in the obduction of the Semail Ophiolite and then in the stacking of underlying platform carbonate units of the former Arabian passive margin, thus accounting for the present architecture of this transect: (1) first, deformation at the plate boundary initiated in the Late Cretaceous, resulting in the obduction of the Semail Ophiolite and the progressive accretion of the Hawasina and Sumeini tectonic wedge on top of the Arabian foreland, leading to a progressive bending of its lithosphere and development of a wide flexural basin; (2) compression resumed during the Neogene, leading to the tectonic stacking of the parautochthonous platform duplexes of Musandam and Margham trends, the development of out-of-sequence thrusts and triangle zones, refolding of the sole thrust of the former Late Cretaceous accretionary wedge and coeval normal (?) high-angle faulting along the contact between the Musandam and Dibba zones. However, seismic profiles and paleo-thermometers also help in identifying another erosional event at the boundary between the Paleogene Pabdeh and the Neogene Fars series. Evidenced by the local erosional truncation of the Pabdeh series in the vicinity of the frontal triangle zone (i.e. the inner part of the former Late Cretaceous foredeep), this Paleogene uplift/unroofing episode is tentatively interpreted here as an evidence for a continuum of compressional deformation lasting from the Late Cretaceous to the Middle Miocene although one may alternatively speculate that it was related to the detachment of the subducted slab. Although carbonate facies are usually not suitable for apatite fission track (AFT) studies, we were able to extract detrital apatites from quartz-bearing Triassic dolomites in the Musandam area. However, the yield and the quality were both poor and too few fission track lengths could be measured, making it difficult to interpret the meaning of the FT ages. The FT dates obtained in this study are therefore compared with those existing in the literature. Fortunately enough, for each sample, at least ten apatite crystals could be used for fission track dating, except for site 6 with only five datable apatite grains. The obtained apatite fission track dates between 28 and 13 Ma, much younger than the Triassic age of the series, are taken to represent reset fission track ages, implying erosion of an up-to-3-km-thick pile of Jurassic–Cretaceous carbonates and Hawasina allochthon during the Neogene. Apatite fission track dates from the ~95 M-old plagiogranites of the Semail complex (Searle and Cox, Geol Mag 139(3):241–255, 2002) obtained in this study and compared with those recently published provide evidences for more than one cooling event. An early unroofing of the ophiolite during the Late Cretaceous is revealed in fission track dates of 72–76 Ma at the top of the ophiolite in the east, which are coeval and also consistent with the occurrence of paleo-soils, rudists and paleo-reefs on top of serpentinized ultramafics in the west. High-pressure rocks at As Sifah in the southeast near Muscat revealed apatite fission track data ranging from ~46 to 63 Ma (Gray et al. 2006). The leucocratic part of the ophiolite (sample UAE 180) yielded comparable young apatite (40.6?±?3.9 Ma) and zircon (46.6?±?4.3 Ma) FT dates. A Cenozoic (~20–21 Ma) exhumation has been determined for the Bani Hamid metamorphic sole in northern Oman, applying low temperature geochronology and combining apatite FT and apatite (U–Th)/He analyses (Gray et al. 2006). In this study, young apatite fission track dates of 20 Ma have also been found but at the base of the ophiolite near Masafi, in the core of the nappe anticline, thus indicating a Neogene age for the refolding of the allochthon and stacking of underlying parautochthonous platform carbonate units. During the subsequent 2D forward Thrustpack kinematic modelling of the regional transect, these AFT data-set has been used, together with available subsurface information, to reconstruct the past architecture of the structural sections through time, accounting for incremental deformation along the various decollement levels, synorogenic sedimentation and erosion, as well as for successive bending and unbending episodes of the Arabian lithosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号