首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   4篇
  国内免费   2篇
测绘学   10篇
大气科学   10篇
地球物理   28篇
地质学   59篇
海洋学   3篇
天文学   8篇
自然地理   6篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2019年   2篇
  2018年   6篇
  2017年   6篇
  2016年   12篇
  2015年   5篇
  2014年   10篇
  2013年   6篇
  2012年   6篇
  2011年   4篇
  2010年   8篇
  2009年   6篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   7篇
  2003年   3篇
  2002年   4篇
  2001年   6篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1987年   2篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有124条查询结果,搜索用时 31 毫秒
81.
A groundwater recharge process of heterogeneous hard rock aquifer in the Moole Hole experimental watershed, south India, is being studied to understand the groundwater flow behaviour. Significant seasonal variations in groundwater level are observed in boreholes located at the outlet area indicating that the recharge process is probably taking place below intermittent streams. In order to localize groundwater recharge zones and to optimize implementation of boreholes, a geophysical survey was carried out during and after the 2004 monsoon across the outlet zone. Magnetic resonance soundings (MRS) have been performed to characterize the aquifer and measure groundwater level depletion. The results of MRS are consistent with the observation in boreholes, but it suffers from degraded lateral resolution. A better resolution of the regolith/bedrock interface is achieved using electrical resistivity tomography (ERT). ERT results are confirmed by resistivity logging in the boreholes. ERT surveys have been carried out twice—before and during the monsoon—across the stream area. The major feature of recharge is revealed below the stream with a decrease by 80% of the calculated resistivity. The time‐lapse ERT also shows unexpected variations at a depth of 20 m below the slopes that could have been interpreted as a consequence of a deep seasonal water flow. However, in this area time‐lapse ERT does not match with borehole data. Numerical modelling shows that in the presence of a shallow water infiltration, an inversion artefact may take place thus limiting the reliability of time‐lapse ERT. A combination of ERT with MRS provides valuable information on structure and aquifer properties respectively, giving a clue for a conceptual model of the recharge process: infiltration takes place in the conductive fractured‐fissured part of the bedrock underlying the stream and clayey material present on both sides slows down its lateral dissipation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
82.
Assessment of chemistry of groundwater infiltrated by pit-toilet leachate and contaminant removal by vadose zone form the focus of this study. The study area is Mulbagal Town in Karnataka State, India. Groundwater level measurements and estimation of unsaturated permeability indicated that the leachate recharged the groundwater inside the town at the rate of 1 m/day. The average nitrate concentration of groundwater inside the town (148 mg/L) was three times larger than the permissible limit (45 mg/L), while the average nitrate concentration of groundwater outside the town (30 mg/L) was below the permissible limit. The groundwater inside the town exhibited E. coli contamination, while groundwater outside the town was free of pathogen contamination. Infiltration of alkalis (Na+, K+) and strong acids (Cl?, SO4 2?) caused the mixed Ca–Mg–Cl type (60 %) and Na–Cl type (28 %) facies to predominate groundwater inside the town, while, Ca–HCO3 (35 %), mixed Ca–Mg–Cl type (35 %) and mixed Ca–Na–HCO3 type (28 %) facies predominated groundwater outside/periphery of town. Reductions in E. coli and nitrate concentrations with vadose zone thickness indicated its participation in contaminant removal. A 4-m thickness of unsaturated sand + soft, disintegrated weathered rock deposit facilitates the removal of 1 log of E. coli pathogen. The anoxic conditions prevailing in the deeper layers of the vadose zone (>19 m thickness) favor denitrification resulting in lower nitrate concentrations (28–96 mg/L) in deeper water tables (located at depths of ?29 to ?39 m).  相似文献   
83.
The observed linear polarization data of comet Hyakutake are studied at wavelengths λ=0.365 μm,λ=0.485 μm and 0.684 μm through simulations using Ballistic Particle-Cluster Aggregate and Ballistic Cluster-Cluster Aggregate aggregates of 128 spherical monomers.We first found that the size parameter of the monomer,x~1.56-1.70,turned out to be the most suitable which provides the best fits to the observed dust scattering properties at three wavelengths:λ=0.365 μm,0.485 μm and 0.684 μm.Thus,the effective radius of the aggregate(r)lies in the range 0.45 μm ≤ r≤ 0.49 μm at λ=0.365 μm;0.60μm < r < 0.66 μm at λ=0.485 μmand 0.88 μm < r < 0.94 μm at λ=0.684 μm.Now using superposition T-MATRIX code and the power-law size distribution,n(r)~r-3,the best-fitting values of complex refractive indices are calculated for the observed polarization data at the above three wavelengths.The best-fitting complex refractive indices(n,k)are found to be (1.745,0.095)at λ=0.365 μm,(1.743,0.100)at λ=0.485 μm and(1.695,0.100)at λ=0.684 μm.The refractive indices derived from the present analysis correspond to a mixture of both silicates and organics,which are in good agreement with the in situ measurement of comets by different spacecraft.  相似文献   
84.
The influence of the pedogenic and climatic contexts on the formation and preservation of pedogenic carbonates in a climosequence in the Western Ghats (Karnataka Plateau, South West India) has been studied. Along the climosequence, the current mean annual rainfall (MAR) varies within a 80 km transect from 6000 mm at the edge of the Plateau to 500 mm inland. Pedogenic carbonates occur in the MAR range of 500-1200 mm. In the semi-arid zone (MAR: 500-900 mm), carbonates occur (i) as thick hardpan calcretes on pediment slopes and (ii) as nodular horizons in polygenic black soils (i.e. vertisols). In the sub-humid zone (MAR: 900-1500 mm), pedogenic carbonates are disseminated in the black soil matrices either as loose, irregular and friable nodules of millimetric size or as indurated botryoidal nodules of centimetric to pluricentimetric size. They also occur at the top layers of the saprolite either as disseminated pluricentimetric indurated nodules or carbonate-cemented lumps of centimetric to decimetric size.Chemical and isotopic (87Sr/86Sr) compositions of the carbonate fraction were determined after leaching with 0.25 N HCl. The corresponding residual fractions containing both primary minerals and authigenic clays were digested separately and analyzed. The trend defined by the 87Sr/86Sr signatures of both labile carbonate fractions and corresponding residual fractions indicates that a part of the labile carbonate fraction is genetically linked to the local soil composition. Considering the residual fraction of each sample as the most likely lithogenic source of Ca in carbonates, it is estimated that from 24% to 82% (55% on average) of Ca is derived from local bedrock weathering, leading to a consumption of an equivalent proportion of atmospheric CO2. These values indicate that climatic conditions were humid enough to allow silicate weathering: MAR at the time of carbonate formation likely ranged from 400 to 700 mm, which is 2- to 3-fold less than the current MAR at these locations.The Sr, U and Mg contents and the (234U/238U) activity ratio in the labile carbonate fraction help to understand the conditions of carbonate formation. The relatively high concentrations of Sr, U and Mg in black soil carbonates may indicate fast growth and accumulation compared to carbonates in saprolite, possibly due to a better confinement of the pore waters which is supported by their high (234U/238U) signatures, and/or to higher content of dissolved carbonates in the pore waters. The occurrence of Ce, Mn and Fe oxides in the cracks of carbonate reflects the existence of relatively humid periods after carbonate formation. The carbonate ages determined by the U-Th method range from 1.33 ± 0.84 kyr to 7.5 ± 2.7 kyr and to a cluster of five ages around 20 kyr, i.e. the Last Glacial Maximum period. The young occurrences are only located in the black soils, which therefore constitute sensitive environments for trapping and retaining atmospheric CO2 even on short time scales. The maximum age of carbonates depends on their location in the climatic gradient: from about 20 kyr for centimetric nodules at Mule Hole (MAR = 1100 mm/yr) to 200 kyr for the calcrete at Gundlupet (MAR = 700 mm/yr, Durand et al., 2007). The intensity of rainfall during wet periods would indeed control the lifetime of pedogenic carbonates and thus the duration of inorganic carbon storage in soils.  相似文献   
85.
A quantitative study on fluvial processes was carried out in an upland stream catchment (9.3 ha) near Agolai in the NE of Jodhpur district in the Thar Desert in Rajasthan. The catchment of the studied second order ephemeral channel (1.0–1.4 km long and 1.0–1.5 m deep) has developed on a hill — rocky/gravelly pediment — colluvial plain sequence on rhyolite. Initial results of measurements of channel parameters during two significant runoff generating events of 42 mm and 52 mm in 2007 showed peak discharges of 20 m3s−1 (upstream) and 13 m3s−1 (downstream) that moved sediments (bedload) to distances of 43 m − 141 m in the upstream reach, 6–28 m in the middle reach and 63–95 m in the lower reach. The long profile and cross profile measurements showed a balance between load and discharge through a sequence of alternate deposition and erosion throughout the channel. Hypsometry curves revealed maximum erosion (7.7 cm) in the upper reach and aggradation (2.90 cm) in the lower reach. Cross profile measurements showed bank cuts (6 cm) and vertical incisions (1–2 cm) on the rocky-gravelly V shaped valley in the upper reach, incision (4–30 cm) and localized higher deposition (10–12 cm) in the narrow (<1m) and deep (>1m) U shaped valleys in middle reach and mainly deposition (13 cm) on the wide ( 1–4 m) and shallow channels (0.1 to 0.2 m) in the lower reach.  相似文献   
86.
87.
88.
Major ion and trace element analyses were performed on groundwater samples collected from the Bengal Delta (Chakdaha municipality, West Bengal and Manikgonj town, Bangladesh) and Chianan Plains (SW Taiwan) to compare geochemical characteristics. Results showed that concentrations of Na, K, Mg, Cl and SO4 were generally higher in Chianan Plain (CNP) groundwaters, while high Ca was observed in Bengal Delta Plain (BDP) groundwater. Measured As concentrations in groundwaters of BDP and CNP showed large variations, with mean As concentrations of 221 μg/L (range: 1.1-476 μg/L) in Chakdaha, 60 μg/L (range: 0.30-202 μg/L) in Manikgonj, and 208 μg/L (range: 1.3-575 μg/L) in CNP groundwater. The Fe-reduction mechanism was found to be the dominant geochemical process in releasing As from sediment to groundwater in Chakdaha, West Bengal, however the Mn-reduction process was dominant in groundwaters of Manikgonj, Bangladesh. In Chianan Plain groundwater, a combination of geochemical processes (e.g., bacterial Fe-reduction, mineral precipitation and dissolution reactions) controlled release of As. Fluorescence spectral patterns of the groundwater showed low relative fluorescence intensity (RFI) of dissolved humic substances in BDP groundwater (mean: 63 and 72 QSU, Chakdaha and Manikgonj, respectively), while high RFI was observed in CNP groundwater (mean: 393 QSU). The FT-IR spectra of the extracted humic acid fractions from sediments of Chianan Plain showed a stronger aliphatic band at 2850-3000 cm−1 and a higher resolved fingerprint area (from 1700 to 900 cm−1) compared with BDP sediments. The geochemical differences between the study areas may play a crucial role in the clinical manifestation of Blackfoot disease observed only in Chianan Plain, SW Taiwan.  相似文献   
89.
Comet 1P/Halley has the unique distinction of having a very comprehensive set of observational records for almost every perihelion passage from 240 B.C. This has helped to constrain theoretical models pertaining to its orbital evolution. Many previous works have shown the active role of mean motion resonances (MMR) in the evolution of various meteoroid streams. Here, we look at how various resonances, especially the 1:6 and 2:13 MMR with Jupiter, affect comet 1P/Halley and thereby enhance the chances of meteoroid particles getting trapped in resonance, leading to meteor outbursts in some particular years. Comet Halley itself librated in the 2:13 resonance from 240 B.C. to 1700 A.D. and in the 1:6 resonance from 1404 B.C. to 690 B.C., while stream particles can survive for time scales of the order of 10,000 yr and 1,000 yr in the 1:6 and 2:13 resonances, respectively. This determines the long‐term dynamical evolution and stream structure, influencing the occurrence of Orionid outbursts. Specifically, we are able to correlate the occurrence of enhanced meteor phenomena seen between 1436–1440, 1933–1938, and 2006–2010 with the 1:6 resonance and meteor outbursts in 1916 and 1993 with the 2:13 resonance. Ancient as well as modern observational records agree with these theoretical simulations to a very good degree.  相似文献   
90.
Ashok Mishra  S. Kar  V. P. Singh 《水文研究》2007,21(22):3035-3045
The Hydrologic Simulation Programme‐Fortran (HSPF), a hydrologic and water quality computer model, was employed for simulating runoff and sediment yield during the monsoon months (June–October) from a small watershed situated in a sub‐humid subtropical region of India. The model was calibrated using measured runoff and sediment yield data for the monsoon months of 1996 and was validated for the monsoon months of 2000 and 2001. During the calibration period, daily‐calibrated runoff had a Nash‐Sutcliffe efficiency (ENS) value of 0·68 and during the validation period it ranged from 0·44 to 0·67. For daily sediment yield ENS was 0·71 for the calibration period and it ranged from 0·68 to 0·90 for the validation period. Sensitivity analysis was performed to assess the impact of important watershed characteristics. The model parameters obtained in this study could serve as reference values for model application in similar climatic regions, with practical implications in watershed planning and management and designing best management practices. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号