首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   3篇
  国内免费   1篇
大气科学   1篇
地球物理   25篇
地质学   10篇
海洋学   14篇
天文学   9篇
综合类   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   5篇
  2016年   6篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2010年   5篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  2000年   1篇
  1998年   4篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
排序方式: 共有63条查询结果,搜索用时 78 毫秒
61.
A comparative study of ecosystems and biogeochemistry at time-series stations in the subarctic gyre (K2) and subtropical region (S1) of the western North Pacific Ocean (K2S1 project) was conducted between 2010 and 2013 to collect essential data about the ecosystem and biological pump in each area and to provide a baseline of information for predicting changes in biologically mediated material cycles in the future. From seasonal chemical and biological observations, general oceanographic settings were verified and annual carbon budgets at both stations were determined. Annual mean of phytoplankton biomass and primary productivity at the oligotrophic station S1 were comparable to that at the eutrophic station K2. Based on chemical/physical observations and numerical simulations, the likely “missing nutrient source” was suggested to include regeneration, meso-scale eddy driven upwelling, meteorological events, and eolian inputs in addition to winter vertical mixing. Time-series observation of carbonate chemistry revealed that ocean acidification (OA) was ongoing at both stations, and that the rate of OA was faster at S1 than at K2 although OA at K2 is more critical for calcifying organisms.  相似文献   
62.
This paper presents the results on shaking table tests of half‐scale brick walls performed to investigate the effectiveness of newly developed Cu–Al–Mn superelastic alloy (SEA) bars in retrofitting of historical masonry constructions. Problems associated with conventional steel reinforcing bars lie in degradation of stiffness and strength, or pinching phenomena, under cyclic loading, and presence of large residual cracks in structures during and after intense earthquakes. This paper attempts to resolve the problems by applying newly developed Cu–Al–Mn SEA bars, characterized by large recovery strain, low material cost, and high machinability, as partial replacements for steel bars. Sets of unreinforced, steel reinforced, and SEA‐reinforced specimens are subjected to scaled earthquake excitations in out‐of‐plane direction. Whereas steel‐reinforced specimens showed large residual inclinations, SEA‐reinforced specimens resulted in stable rocking response with slight residual inclinations. Corresponding nonlinear finite element (FE) models are developed to simulate the experimental observations. The FE models are further used to examine the sensitivity of the response with respect to the variations in experimental conditions. Both the experimental and numerical results demonstrate the superiority of Cu–Al–Mn SEA bars to conventional steel reinforcing bars in avoiding pinching phenomena. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
63.
We used 16 years of multiplatform-derived biophysical data to reveal the footprint of the Pacific Decadal Oscillation (PDO) on the phytoplankton biomass of the northwestern Pacific Ocean in terms of chlorophyll a concentration (Chl), and to discern the probable factors causing the observed footprint. There were meridional differences in the response of phytoplankton to changes of environmental conditions associated with deepening of the mixed layer during the positive phase of the PDO. In general, deepening of the mixed layer increased phytoplankton biomass at low latitudes (increase of Chl due to increase of nutrient supply), but lowered phytoplankton at high latitudes (decrease of Chl due to reduction of average irradiance and temperature in the mixed layer). The areas where Chl increased or decreased changed meridionally and seasonally in accord with regulation of nutrient and light/temperature limitation by changes of mixed layer depth. The observed PDO footprint on Chl in the northwestern Pacific is likely superimposed on the high-frequency component of the PDO excited by El Niño/Southern Oscillation interannual variability. On a decadal time scale, however, Chl in the northwestern Pacific were more strongly associated with the recently discovered North Pacific Gyre Oscillation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号