首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   3篇
  国内免费   1篇
大气科学   1篇
地球物理   25篇
地质学   10篇
海洋学   14篇
天文学   9篇
综合类   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   5篇
  2016年   6篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2010年   5篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  2000年   1篇
  1998年   4篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
排序方式: 共有63条查询结果,搜索用时 31 毫秒
31.
Abstract: The bio-essential elements are demanded for the metabolic action of all living organisms. These elements are continuously supplied to biosphere through the elemental cycle on the surface Earth. The geochemical cycle of bio-essential elements was most likely different in the pre-biotic era (ca. 4.4 to 4.0 Ga) compared to the modern Earth. The difference was probably made by the absence of continents and biological mediation in the pre-biotic environments. Geochemical cycle models of bio-essential elements (P, B and Mo) on the pre-biotic Earth are proposed in this study, and these models are examined using available geochemical data.
The input flux of phosphorous in pre-biotic oceans was probably dominated by submarine hydrothermal activities associated with carbonatized oceanic crusts. Such input flux by submarine hydrothermal activities is not known in the present-day oceans, and probably a unique flux in the pre-biotic oceans. Boron chemistry of pre-biotic oceans was also controlled by submarine hydrothermal input flux. The Mo exchange between the pre-biotic ocean and lithosphere may have restricted only at the submarine hydrothermal areas. These suggest that the submarine hydrothermal discharging areas were only locations to obtain bio-essential elements for the earliest life. This model is consistent with the previously proposed model for hydrothermal origin of life.  相似文献   
32.
Spinel-type twins of magnetite in a talc rock and a talk-magnesite rock at Torika, Nagasaki Prefecture, Japan have been studied by means of optical microscopy, differential interference microscopy, microprobe analysis and size distribution analysis. The growth processes are discussed in detail. The number of magnetite twins in the talc-magnesite rock is larger than in the talc rock, and the percentage of the frequency number increases rapidly with increase in grain size. It is suggested that magnetite crystals in the talc-magnesite rock have grown by rapid crystallization in the earlier stage and by a layer-growth mechanism in the later stage in the carbonation-dehydration reaction that occurred within the rock. As large number of twin nuclei formed by rapid crystallization in the earlier stage of magnetite formation. As the dehydration reaction proceeded, the number of twin nuclei gradually decreased with the lowering of supersaturation by addition of some water. Magnetite crystals in the talc rock formed after talc crystallization by silicification and dehydration reactions in the process of steatitization. The twin nuclei here must have formed with difficulty, governed by the distribution of talc which crystallized before the magnetite and at relatively low supersaturation.  相似文献   
33.
Bacteria appeared early in the evolution of cellular life on planet Earth, and therefore the universally essential genes or biological pathways found across bacterial domains may represent fundamental genetic or cellular systems used in early life. The essential genes and the minimal gene set required to support bacterial life have recently been experimentally and computationally identified. It is, however,still hard to estimate the ancient genes present in primitive cells compared to the essential genes in contemporary bacteria, because we do not know how ancestral primitive cells lived and proliferated, and therefore cannot directly evaluate the essentiality of the genes in ancestral primitive cells. The cell wall is normally essential for bacterial proliferation and cellular division of walled bacterial cells is normally highly controlled by the essential FtsZ cell division machinery. But, bacteria are capable of reverting to their cell wall deficient ancestral form, called the "L-form". Unlike "normal" cells, L-forms divide by a simple physical mechanism based on the effects of membrane dynamics, suggesting a mode of primitive proliferation before the appearance of the cell wall. In this review, we summarize the experimental and computational investigations of minimal gene sets and discuss the minimal cellular modules required to support the proliferation of primitive cells, based on L-form proliferation.  相似文献   
34.
We present a vertical vibration isolator having a piecewise‐constant restoring force, which belongs to a class of passive and nonlinear vibration isolators. In vertical vibration isolation, direct use of low‐stiffness elements leads to unacceptably large deformations due to self‐weight. To overcome the difficulty, we apply a combination of constant‐force springs, each of which sustains a constant load regardless of its stretch. By arranging the constant‐force springs, so that the isolator has a piecewise‐constant restoring force, we alleviate the problem of the excessive deformation caused by self‐weight, provide stability at the static equilibrium state along with the self‐centering capability, and realize a large stroke while keeping the mechanism simple and compact. Further, we attempt to limit the response acceleration within a tolerance regardless of the frequency spectrum and the magnitude of earthquake ground motions. We demonstrate the effectiveness of the present isolator through shaking table tests and numerical simulations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
35.
The kinetic energy (KE) seasonality has been revealed by satellite altimeters in many oceanic regions. Question about the mechanisms that trigger this seasonality is still challenging. We address this question through the comparison of two numerical simulations. The first one, with a 1/10° horizontal grid spacing, 54 vertical levels, represents dynamics of physical scales larger than 50 km. The second one, with a 1/30° grid spacing, 100 vertical levels, takes into account the dynamics of physical scales down to 16 km. Comparison clearly emphasizes in the whole North Pacific Ocean, not only a significant KE increase by a factor up to three, but also the emergence of seasonal variability when the scale range 16–50 km (called submesoscales in this study) is taken into account. But the mechanisms explaining these KE changes display strong regional contrasts. In high KE regions, such the Kuroshio Extension and the western and eastern subtropics, frontal mixed-layer instabilities appear to be the main mechanism for the emergence of submesoscales in winter. Subsequent inverse kinetic energy cascade leads to the KE seasonality of larger scales. In other regions, in particular in subarctic regions, results suggest that the KE seasonality is principally produced by larger-scale instabilities with typical scales of 100 km and not so much by smaller-scale mixed-layer instabilities. Using arguments from geostrophic turbulence, the submesoscale impact in these regions is assumed to strengthen mesoscale eddies that become more coherent and not quickly dissipated, leading to a KE increase.  相似文献   
36.
37.
38.
39.
The sea surface salinity (SSS) derived from a network developed at Institut de Recherche pour le Développement (IRD/Nouméa) has been analyzed during the period 1995–1998 in the tropical western Pacific. The measurements were made with thermosalinographs installed on merchant ships selected for their regularity and routes. The western tropical Pacific was sampled mainly along three regular routes across the equator leading to an average of a one month frequency. We analyze here how such a network can be efficient in monitoring the SSS at time scales longer than one month. For this purpose we have used results derived from the Princeton Ocean Model (POM) which is forced by the surface flux of National Centers for Environmental Prediction (NCEP) reanalysis data. The interannual variability of the simulated SSS exhibits very similar features to (sub-sampled) observations despite its being weakly damped to a climatology in order to avoid biases. Even smaller time scale phenomena can be simulated, like the erosion/reconstruction of the region composed of low density waters lying within the Pacific warm pool. The agreement between the observational data and the simulations indicate that the network sampling is sufficient to monitor the SSS variability of the western tropical Pacific from three-month to interannual time scales. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
40.
The annual flux of biologically produced organic carbon from surface waters is equivalent to annual net community production (NCP) at a steady state and equals the export of particulate and dissolved organic carbon (POC and DOC, respectively) to the ocean interior. NCP was estimated from carbon budgets of salinity-normalized dissolved inorganic carbon (nDIC) inventories at two time-series stations in the western subarctic (K2) and subtropical (S1) North Pacific Ocean. By using quasi-monthly biogeochemical observations from 2004 to 2013, monthly mean nDIC inventories were integrated from the surface to the annual maximum mixed layer depth and corrected for changes due to net air–sea CO2 exchange, net CaCO3 production, vertical diffusion from the upper thermocline, and horizontal advection. The annual organic carbon flux at K2 (1.49 ± 0.42 mol m?2 year?1) was lower than S1 (2.81 ± 0.53 mol m?2 year?1) (p < 0.001 based on t test). These fluxes consist of three components: vertically exported POC fluxes (K2: 1.43 mol m?2 year?1; S1: 2.49 mol m?2 year?1), vertical diffusive DOC fluxes (K2: 0.03 mol m?2 year?1; S1: 0.25 mol m?2 year?1), and suspended POC fluxes (K2: 0.03 mol m?2 year?1; S1: 0.07 mol m?2 year?1). The estimated POC export flux at K2 was comparable to the sum of the POC flux observed with drifting sediment traps and active carbon flux exported by migrating zooplankton. The export fluxes at both stations were higher than those reported at other time-series sites (ALOHA, the Bermuda Atlantic Time-series Study, and Ocean Station Papa).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号