全文获取类型
收费全文 | 29509篇 |
免费 | 391篇 |
国内免费 | 320篇 |
专业分类
测绘学 | 616篇 |
大气科学 | 1824篇 |
地球物理 | 5306篇 |
地质学 | 11335篇 |
海洋学 | 2976篇 |
天文学 | 6894篇 |
综合类 | 68篇 |
自然地理 | 1201篇 |
出版年
2022年 | 298篇 |
2021年 | 457篇 |
2020年 | 511篇 |
2019年 | 568篇 |
2018年 | 1103篇 |
2017年 | 1053篇 |
2016年 | 1161篇 |
2015年 | 552篇 |
2014年 | 1052篇 |
2013年 | 1707篇 |
2012年 | 1165篇 |
2011年 | 1446篇 |
2010年 | 1297篇 |
2009年 | 1564篇 |
2008年 | 1345篇 |
2007年 | 1408篇 |
2006年 | 1304篇 |
2005年 | 763篇 |
2004年 | 706篇 |
2003年 | 659篇 |
2002年 | 689篇 |
2001年 | 619篇 |
2000年 | 568篇 |
1999年 | 461篇 |
1998年 | 480篇 |
1997年 | 453篇 |
1996年 | 391篇 |
1995年 | 350篇 |
1994年 | 378篇 |
1993年 | 294篇 |
1992年 | 297篇 |
1991年 | 286篇 |
1990年 | 322篇 |
1989年 | 220篇 |
1988年 | 225篇 |
1987年 | 268篇 |
1986年 | 209篇 |
1985年 | 314篇 |
1984年 | 276篇 |
1983年 | 258篇 |
1982年 | 275篇 |
1981年 | 203篇 |
1980年 | 243篇 |
1979年 | 195篇 |
1978年 | 211篇 |
1977年 | 165篇 |
1976年 | 163篇 |
1975年 | 172篇 |
1974年 | 167篇 |
1973年 | 166篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Solar phase curves between 0.3° and 6.0° and color ratios at wavelengths λ=0.336 μm and λ=0.555 μm for Saturn's rings are presented using recent Hubble Space Telescope observations. We test the hypothesis that the phase reddening of the rings is less due to collective properties of the ring particles than to the individual properties of the ring particles. We use a modified Drossart model, the Hapke model, and the Shkuratov model to model reddening by either intraparticle shadow-hiding on fractal and normal surfaces, multiple scattering, or some combination. The modified Drossart model (including only shadowing) failed to reproduce the data. The Hapke model gives fair fits, except for the color ratios. A detailed study of the opposition effect suggests that coherent backscattering is the principal cause of the opposition surge at very small phase angles. The shape of the phase curve and color ratios of each main ring regions are accurately represented by the Shkuratov model, which includes both a shadow-hiding effect and coherent backscatter enhancement. Our analysis demonstrates that in terms of particle roughness, the C ring particles are comparable to the Moon, but the Cassini division and especially the A and B ring particles are significantly rougher, suggesting lumpy particles such as often seen in models. Another conspicuous difference between ring regions is in the effective size d of regolith grains (d∼λ for the C ring particles, d∼1-10 μm for the other rings). 相似文献
992.
This project examines the different approaches which deal with the theory of radiative transfer on atmosphereless bodies. We present the relative merits of two scattering theories based on the equivalent slab model: the extensively used Hapke theory (Hapke 1981, J. Geophys. Res.86, 3039-3054) and the Shkuratov theory (Shkuratov et al. 1999, Icarus141, 132-155). We found that their main difference is the role of the phase function of individual particles of regolith, which is predicted (and generally forward directed) in the case of the Shkuratov model instead of being a free parameter as formulated in the Hapke model. We also emphasize that different assumptions as to the manner in which different constituents are physically mixed in either model have a substantial effect on the synthetic spectra inferred. This leads to a significant extension of the validity of Hapke's or similar practical approaches to areas where these approaches are valid.We used two objects (the Centaurs 5145 Pholus and 8405 Asbolus) as examples. Previous modeling of the spectra of these two bodies with the Hapke approach gave suspect results in terms of the derived grain sizes, which were smaller than the wavelength, violating key assumptions of the model (Cruikshank et al. 1998, Icarus135, 389-407 for Pholus; Barucci et al. 2000, Astron. Astrophys.357, L53-56 for Asbolus). We considered several different types of powdered surfaces to interpret the surface composition of these two Centaurs. The effect of fine-scale contamination of water ice grains by small amounts of carbon and/or tholins is also explored. We can explain the strong red color and the rich near-infrared spectral signatures of Pholus using a five-component surface (contaminated water ice, amorphous carbon, Titan tholin, olivine, and methanol ice) where the grain sizes are consistent with the model assumptions. These components are similar to those inferred by Cruikshank et al. (1998), but we obtain very different grain sizes and relative abundances. For example, we obtain a relative abundance of water ice on the surface of Pholus of about 40% instead of 6% found with the Hapke model. Organic and carbonaceous components change by similar amounts. In the case of Asbolus, a tholin and amorphous carbon areal mixture can reproduce the spectrum, with water remaining at 9% or less. Using the albedo published by Fernandez et al. (2002, Astron. J.123, 1050-1055) which is higher than most workers assume for Centaurs and Kuiper belt objects, a surface composition similar to that of Pholus is found. It appears that model-based uncertainties in relative compositions must be regarded with more attention. 相似文献
993.
K.O. Mason M. Chester C. Gronwall S. Hunsberger S. Koch P.T. O'Brien P. Roming A. Wells R. Willingale N. Gehrels 《Icarus》2007,187(1):123-131
We report time-resolved imaging UV photometry of Comet 9P/Tempel 1 during the interval 2005 June 29-2005 July 21, including intensive coverage of the collision with the Deep Impact probe and its immediate aftermath. The nuclear flux of the comet begins to rise within minutes of the collision, and peaks about 3 h after impact. There is no evidence for a prompt flash at the time of impact. The comet exhibits a significant re-brightening about 40 h after the initial outburst, consistent with the rotation period of the comet, with evidence for further periodic re-brightenings on subsequent rotations. Modelling of the brightness profile of the coma as a function of time suggests two distinct velocity systems in the ejecta, at de-projected expansion speeds of 190 and 550 m/s, which we suggest are due to dust and gas, respectively. There is a distinct asymmetry in the slower-moving (dust) component as a function of position angle on the sky. This is confirmed by direct imaging analysis, which reveals an expanding plume of material concentrated in the impact hemisphere. The projected expansion velocity of the leading edge of this plume, measured directly from the imaging data, is 190 m/s, consistent with the velocity of the dust component determined from the photometric analysis. From our data we determine that a total of (1.4±0.2)×1032 water molecules were ejected in the impact, together with a total scattering area of dust at 300 nm of 190±20 km2. 相似文献
994.
R. de Kok P.G.J. Irwin E. Lellouch B. Bézard S. Vinatier C.A. Nixon C. Howett N.E. Bowles F.W. Taylor 《Icarus》2007,186(2):354-363
We have investigated the abundances of Titan's stratospheric oxygen compounds using 0.5 cm−1 resolution spectra from the Composite Infrared Spectrometer on the Cassini orbiter. The CO abundance was derived for several observations of far-infrared nadir spectra, taken at a range of latitudes (75° S-35° N) and emission angles (0°-60°), using rotational lines that have not been analysed before the arrival of Cassini at Saturn. The derived volume mixing ratios for the different observations are mutually consistent regardless of latitude. The weighted mean CO volume mixing ratio is 47±8 ppm if CO is assumed to be uniform with latitude. H2O could not be detected and an upper limit of 0.9 ppb was determined. CO2 abundances derived from mid-infrared nadir spectra show no significant latitudinal variations, with typical values of 16±2 ppb. Mid-infrared limb spectra at 55° S were used to constrain the vertical profile of CO2 for the first time. A vertical CO2 profile that is constant above the condensation level at a volume mixing ratio of 15 ppb reproduces the limb spectra very well below 200 km. This is consistent with the long chemical lifetime of CO2 in Titan's stratosphere. Above 200 km the CO2 volume mixing ratio is not well constrained and an increase with altitude cannot be ruled out there. 相似文献
995.
N.A. Teanby P.G.J. Irwin S. Vinatier C.A. Nixon S.B. Calcutt L. Fletcher F.W. Taylor 《Icarus》2007,186(2):364-384
Mid-infrared limb spectra in the range 600-1400 cm−1 taken with the Composite InfraRed Spectrometer (CIRS) on-board the Cassini spacecraft were used to determine vertical profiles of HCN, HC3N, C2H2, and temperature in Titan's atmosphere. Both high (0.5 cm−1) and low (13.5 cm−1) spectral resolution data were used. The 0.5 cm−1 data gave profiles at four latitudes and the 13.5 cm−1 data gave almost complete latitudinal coverage of the atmosphere. Both datasets were found to be consistent with each other. High temperatures in the upper stratosphere and mesosphere were observed at Titan's northern winter pole and were attributed to adiabatic heating in the subsiding branch of a meridional circulation cell. On the other hand, the lower stratosphere was much colder in the north than at the equator, which can be explained by the lack of solar radiation and increased IR emission from volatile enriched air. HC3N had a vertical profile consistent with previous ground based observations at southern and equatorial latitudes, but was massively enriched near the north pole. This can also be explained in terms of subsidence at the winter pole. A boundary observed at 60° N between enriched and un-enriched air is consistent with a confining polar vortex at 60° N and HC3N's short lifetime. In the far north, layers were observed in the HC3N profile that were reminiscent of haze layers observed by Cassini's imaging cameras. HCN was also enriched over the north pole, which gives further evidence for subsidence. However, the atmospheric cross section obtained from 13.5 cm−1 data indicated a HCN enriched layer at 200-250 km, extending into the southern hemisphere. This could be interpreted as advection of polar enriched air towards the south by a meridional circulation cell. This is observed for HCN but not for HC3N due to HCN's longer photochemical lifetime. C2H2 appears to have a uniform abundance with altitude and is not significantly enriched in the north. This is consistent with observations from previous CIRS analysis that show increased abundances of nitriles and hydrocarbons but not C2H2 towards the north pole. 相似文献
996.
Although water- and ammonia-ices have been observed or postulated as important components of the icy surfaces of planetary satellites in the outer Solar System, significant gaps exist in our knowledge of the spectra and behavior of such mixtures under astrophysical conditions. To that end, we have completed low-temperature spectroscopic studies (1-20 μm) of water-ammonia mixtures, with an emphasis on features in the near-IR, a region which is accessible to ground-based observations. The influences of composition, formation temperature, thermal- and radiation-processing, and phase (crystalline or amorphous) of the components were examined. Spectra of both pure NH3 and H2O-NH3 icy mixtures with ratios from 0.7 to 57 were measured at temperatures from 10 to 120 K. Conditions for the formation and thermal stability of the ammonia hemihydrate (2NH3⋅H2O) and the ammonia monohydrate (NH3⋅H2O) have been examined. Band positions of NH3 in different H2O-ices and major band positions of the hydrates were measured. We report spectral shifts that depend on concentration and temperature. The radiation-induced amorphization of the hemihydrate was observed and the radiation destruction of NH3 in H2O-ices was measured. Implications of these results for the formation, stability, and detection of ammonia on outer satellite surfaces are discussed. 相似文献
997.
Three decades of slope streak activity on Mars 总被引:1,自引:0,他引:1
Slope streaks are surficial mass movements that are abundant in the dust-covered regions of Mars. Targeting of slope streaks seen in Viking images with the Mars Orbiter Camera provides observations of slope streak dust activity over two to three decades. In all study areas, new and persisting dark slope streaks are observed. Slope streaks disappeared in one area, with persisting streaks nearby. New slope streaks are found to be systematically darker than persisting streaks, which indicates gradual fading. Far more slope streaks formed at the study sites than have faded from visibility. The rate of formation at the study sites was 0.03 new slope streaks per existing streak per Mars year. Bright slope streaks do not presently form in sudden events as dark slope streaks do. Instead, bright streaks might form from old dark slope streaks, perhaps transitioning through a partially faded stage. 相似文献
998.
N. Rea G. L. Israel T. Oosterbroek S. Campana S. Zane R. Turolla V. Testa M. Méndez L. Stella 《Astrophysics and Space Science》2007,308(1-4):505-511
We report here on X-ray and IR observations of the Anomalous X-ray Pulsar (AXP) 1RXS J170849-400910. First, we report on new XMM-Newton, Swift-XRT and Chandra observations of this AXP, which confirm the intensity–hardness correlation observed in the long term X-ray monitoring of this source. These new X-ray observations show that the AXP flux is rising again, and the spectrum hardening. If the increase of the source intensity is indeed connected with the glitches and a possible bursting activity, we expect this source to enter in a bursting active phase around 2006–2007. Second, we report on deep IR observations of 1RXS J170849-400910, taken with the VLT-NACO adaptive optics, showing that there are many weak sources consistent with the AXP position. Neither star A or B, as previously proposed by different authors, might yet be conclusively recognised as the IR counterpart of 1RXS J170849-400910. Third, using Monte Carlo simulations, we re-address the calculation of the significance of the absorption line found in a phase-resolved spectrum of this source, and interpreted as a resonant scattering cyclotron feature. 相似文献
999.
David L. COOK Meenakshi WADHWA Robert N. CLAYTON Nicolas DAUPHAS Philip E. JANNEY Andrew M. DAVIS 《Meteoritics & planetary science》2007,42(12):2067-2077
Abstract— We measured nickel isotopes via multicollector inductively coupled plasma mass spectrometry (MC‐ICPMS) in the bulk metal from 36 meteorites, including chondrites, pallasites, and irons (magmatic and non‐magmatic). The Ni isotopes in these meteorites are mass fractionated; the fractionation spans an overall range of ~0.4‰ amu?1. The ranges of Ni isotopic compositions (relative to the SRM 986 Ni isotopic standard) in metal from iron meteorites (~0.0 to ~0.3‰ amu?1) and chondrites (~0.0 to ~0.2‰ amu?1) are similar, whereas the range in pallasite metal (~–0.1 to 0.0‰ amu?1) appears distinct. The fractionation of Ni isotopes within a suite of fourteen IIIAB irons (~0.0 to ~0.3‰ amu?1) spans the entire range measured in all magmatic irons. However, the degree of Ni isotopic fractionation in these samples does not correlate with their Ni content, suggesting that core crystallization did not fractionate Ni isotopes in a systematic way. We also measured the Ni and Fe isotopes in adjacent kamacite and taenite from the Toluca IAB iron meteorite. Nickel isotopes show clearly resolvable fractionation between these two phases; kamacite is heavier relative to taenite by ~0.4‰ amu?1. In contrast, the Fe isotopes do not show a resolvable fractionation between kamacite and taenite. The observed isotopic compositions of kamacite and taenite can be understood in terms of kinetic fractionation due to diffusion of Ni during cooling of the Fe‐Ni alloy and the development of the Widmanstätten pattern. 相似文献
1000.
K.. Gabnyi N. Marchili T.P. Krichbaum S. Britzen L. Fuhrmann A. Witzel J.A. Zensus P. Müller X. Liu H.G. Song J.L. Han X.H. Sun 《Astronomische Nachrichten》2007,328(8):863-866
Short time‐scale radio variations of compact extragalactic radio quasars and blazars known as IntraDay Variability (IDV) can be explained in at least some sources as a propagation effect; the variations are interpreted as scintillation of radio waves in the turbulent interstellar medium of the Milky Way. One of the most convincing observational arguments in favor of a propagation‐induced variability scenario is the observed annual modulation in the characteristic time scale of the variation due to the Earth's orbital motion. So far there are only two sources known with a well‐constrained seasonal cycle. Annual modulation has been proposed for a few other less well‐documented objects. However, for some other IDV sources source‐intrinsic structural variations which cause drastic changes in the variability time scale were also suggested. J1128+592 is a recently discovered, highly variable IDV source. Previous, densely time‐sampled flux‐density measurements with the Effelsberg 100‐m radio telescope (Germany) and the Urumqi 25‐m radio telescope (China), strongly indicate an annual modulation of the time scale. The most recent 4 observations in 2006/7, however, do not fit well to the annual modulation model proposed before. In this paper, we investigate a possible explanation of this discrepancy. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献