首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261642篇
  免费   4404篇
  国内免费   3505篇
测绘学   6981篇
大气科学   19371篇
地球物理   54529篇
地质学   91298篇
海洋学   21817篇
天文学   56608篇
综合类   1019篇
自然地理   17928篇
  2021年   2258篇
  2020年   2636篇
  2019年   2857篇
  2018年   3889篇
  2017年   3708篇
  2016年   5948篇
  2015年   4246篇
  2014年   6943篇
  2013年   14249篇
  2012年   6673篇
  2011年   8174篇
  2010年   7326篇
  2009年   9881篇
  2008年   8601篇
  2007年   8150篇
  2006年   9618篇
  2005年   7753篇
  2004年   7637篇
  2003年   7134篇
  2002年   6722篇
  2001年   5987篇
  2000年   5942篇
  1999年   5200篇
  1998年   5229篇
  1997年   5021篇
  1996年   4679篇
  1995年   4429篇
  1994年   4113篇
  1993年   3852篇
  1992年   3633篇
  1991年   3593篇
  1990年   3765篇
  1989年   3509篇
  1988年   3298篇
  1987年   3849篇
  1986年   3415篇
  1985年   4223篇
  1984年   4736篇
  1983年   4412篇
  1982年   4322篇
  1981年   3933篇
  1980年   3652篇
  1979年   3511篇
  1978年   3484篇
  1977年   3275篇
  1976年   3042篇
  1975年   2960篇
  1974年   2921篇
  1973年   3075篇
  1972年   2024篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
972.
Changes in climatic parameters and in temperature and precipitation extremes in northern Eurasia in the late 20th century are analyzed. A spatial distribution of temperature and precipitation anomalies and of a set of indices of climate extremes is presented. Changes in climate extremes show a tendency toward a milder climate, mainly in winter. At the same time, the frost-free period has substantially decreased in the eastern, northern, and central parts of European Russia. In some regions during summer, there is an increase in the frequency of extreme events such as heavy rains, droughts, and sharp cooling. It is shown that the geographic pattern of present-day climate anomalies is linked to variations in the large-scale atmospheric circulation. The main mechanism of the current warming in northern Eurasia is a winter intensification of zonal flow linked to the increased frequency of positive anomalies of the North Atlantic Oscillation index.  相似文献   
973.
Multi-AUV Control and Adaptive Sampling in Monterey Bay   总被引:3,自引:0,他引:3  
Operations with multiple autonomous underwater vehicles (AUVs) have a variety of underwater applications. For example, a coordinated group of vehicles with environmental sensors can perform adaptive ocean sampling at the appropriate spatial and temporal scales. We describe a methodology for cooperative control of multiple vehicles based on virtual bodies and artificial potentials (VBAP). This methodology allows for adaptable formation control and can be used for missions such as gradient climbing and feature tracking in an uncertain environment. We discuss our implementation on a fleet of autonomous underwater gliders and present results from sea trials in Monterey Bay in August, 2003. These at-sea demonstrations were performed as part of the Autonomous Ocean Sampling Network (AOSN) II project  相似文献   
974.
The dimensions of sand ripples in full-scale oscillatory flows   总被引:1,自引:0,他引:1  
New large-scale experiments have been carried out in two oscillatory flow tunnels to study ripple regime sand suspension and net sand transport processes in full-scale oscillatory flows. The paper focuses on ripple dimensions and the new data are combined with existing data to make a large dataset of ripple heights and lengths for flows with field-scale amplitudes and periods. A feature of the new experiments is a focus on the effect of flow irregularity. The combined dataset is analysed to examine the range of hydraulic conditions under which oscillatory flow ripples occur, to examine the effects of flow irregularity and ripple three-dimensionality on ripple dimensions and to test and improve existing methods for predicting ripple dimensions.The following are the main conclusions. (1) The highest velocities in a flow time-series play an important role in determining the type of bedform occurring in oscillatory flow. Bedform regime is well characterised by mobility number based on maximum velocity in the case of regular flow and based on the mean of the highest one tenth peak velocities in the case of irregular flow. (2) For field-scale flows, sand size is the primary factor determining whether equilibrium ripples will be 2D or 3D. 2D ripples occur when the sand D50 ≥ 0.30 mm and 3D ripples occur when D50 ≤ 0.22 mm (except when the flow orbital diameter is low). (3) Ripple type (2D or 3D) is the same for regular and irregular flows and ripple dimensions produced by equivalent regular and irregular flows follow a similar functional dependence on mobility number, with mobility number based on maximum velocity in the case of regular flow and based on the mean of the highest one tenth velocities in the case of irregular flow. For much of the ripple regime, ripple dimensions have weak dependency on mobility number and ripple dimensions are similar for regular and irregular flows with the same flow orbital amplitude. However, differences in ripples produced by equivalent regular and irregular flows become significant at the high mobility end of the ripple regime. (4) Ripple dimensions predicted using the Wiberg and Harris formulae are in poor agreement with measured ripple dimensions from the large-scale experiments. Predictions based on the Mogridge et al. and the Nielsen formulae show better overall agreement with the data but also show systematic differences in cases of 3D ripples and ripples generated by irregular flows. (5) Based on the combined large-scale data, modifications to the Nielsen ripple dimension equations are proposed for the heights and lengths of 2D ripples. The same equations apply to regular and irregular flows, but with mobility number appropriately defined. 3D ripples are generally smaller than 2D ripples and estimates of 3D ripple height and length may be obtained by applying multipliers of 0.55 and 0.73 respectively to the 2D formulae. The proposed modified Nielsen formulae provide an improved fit to the large-scale data, accounting for flow irregularity and ripple three-dimensionality.  相似文献   
975.
Second-order moment advection scheme applied to Arctic Ocean simulation   总被引:2,自引:0,他引:2  
We apply the second-order moment (SOM) advection scheme of (Prather, M.J. 1986. Numerical advection by conservation of second-order moments. J. Geophys. Res. 91, 6671–6681.) to the simulation of the large-scale circulation of the Arctic Ocean with a coupled ocean–sea-ice model. Compared to three other advection schemes commonly employed in ocean simulations (centred differences, flux corrected transport, and multidimensional positive definite advection transport), the SOM method helps preserve the vertical structure of Arctic water masses. The depth, thickness and hydrographic properties of the Arctic Surface Water and the Arctic Atlantic Layer are better represented with SOM than with any of the other three advection algorithms. We also present a convenient method for calculating the implicit numerical diffusivity of upstream based schemes, such as the SOM method, and discuss three approaches for improving the monotonicity properties of the SOM algorithm.  相似文献   
976.
A set of digital maps including geology, Quaternary sediments, landscapes, engineering-geological, vegetation, geocryological and the series of regional sources have been selected to characterize the Russian Arctic coast. Based on this data, new maps of engineering geocryological zoning and zoning of the coast with respect to the intensity of exogenous geological processes and risk of technogenic impacts have been generated at the scales of 1:4,000,000–1:8,000,000. These maps are a tool to assess the impact of industry on the Arctic coast of the country.  相似文献   
977.
978.
A numerical model to compute wave field is developed. It is based on the Berkhoff diffraction-refraction equation, in which an energy dissipation term is added, to take into account the breaking and the bottom friction phenomena. The energy dissipation function, by breaking and by bottom friction, is introduced in the Berkhoff equation to obtain a new equation of propagation.The resolution is done with the hybrid finite element method, where lagrangians elements are used.  相似文献   
979.
The effect of small-scale turbulence on marine and aquatic particle transport has traditionally been to act as a means for creating homogeneous distributions. However, previous numerical simulations of heavy particle transport in turbulent flows have shown that particles are preferentially concentrated by turbulence and that effects of preferential concentration are most pronounced for particle parameters comparable to the Kolmogorov scales. Therefore, the focus of the present work is examination of the preferential concentration of marine particles. Application of Kolmogorov scaling indicates that effects of preferential concentration may be important for marine particles with diameters of order 1 mm in the upper mixed layer. Numerical simulations of unstratified isotropic turbulence are then used to support the notion that preferential concentration of particles possessing material characteristics representative of those encountered in marine environments can occur. In the simulations, particles of order 1 mm diameter are idealized as rigid spheres with a density ratio of 1.005. Simulation results demonstrate preferential concentration with peak particle number densities ranging from 10 to 60 times the global mean value. Implications of preferential concentration are also discussed, together with the limitations of the approach employed in the present study.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号