首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49223篇
  免费   400篇
  国内免费   387篇
测绘学   1239篇
大气科学   3249篇
地球物理   8410篇
地质学   20992篇
海洋学   4060篇
天文学   10040篇
综合类   218篇
自然地理   1802篇
  2022年   299篇
  2021年   457篇
  2020年   514篇
  2019年   556篇
  2018年   3755篇
  2017年   3430篇
  2016年   2564篇
  2015年   653篇
  2014年   1075篇
  2013年   1696篇
  2012年   2088篇
  2011年   3841篇
  2010年   3413篇
  2009年   3795篇
  2008年   3077篇
  2007年   3710篇
  2006年   1349篇
  2005年   1173篇
  2004年   1040篇
  2003年   1071篇
  2002年   937篇
  2001年   651篇
  2000年   604篇
  1999年   462篇
  1998年   479篇
  1997年   453篇
  1996年   391篇
  1995年   350篇
  1994年   378篇
  1993年   294篇
  1992年   297篇
  1991年   286篇
  1990年   322篇
  1989年   220篇
  1988年   225篇
  1987年   268篇
  1986年   209篇
  1985年   314篇
  1984年   276篇
  1983年   258篇
  1982年   275篇
  1981年   216篇
  1980年   263篇
  1979年   195篇
  1978年   211篇
  1977年   165篇
  1976年   167篇
  1975年   172篇
  1974年   167篇
  1973年   166篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
The results of long-term measurements of residual deformations in the area of the Severomuiskii tunnel during its construction are given. Comparison of spatial and temporal distributions between deformations and earthquakes shows that they are interrelated. The nonlinear behavior of disintegrated and waterlogged rocks within tectonic fault zones should be taken into account even for moderate intensity earthquakes, since they are accompanied by ground subsidence. Underground workings within such sites are subjected to loads that are greater than expected according to current hypotheses, which are the basis for calculations of rock pressure. It is established that the most probable mechanism of ground subsidence and residual deformation in underground workings could be the gravity load of the overlying strata of disintegrated and waterlogged rocks within a fault zone, which leads to instability of the rocks. Approximate stress estimations are made on the basis of the results of measurements of residual deformations of roof supports (linings).  相似文献   
152.
153.
154.
155.
2D and 3D seismic reflection and well log data from Andaman deep water basin are analyzed to investigate geophysical evidence related to gas hydrate accumulation and saturation. Analysis of seismic data reveals the presence of a bottom simulating reflector (BSR) in the area showing all the characteristics of a classical BSR associated with gas hydrate accumulation. Double BSRs are also observed on some seismic sections of area (Area B) that suggest substantial changes in pressure–temperature (P–T) conditions in the past. The manifestation of changes in P–T conditions can also be marked by the varying gas hydrate stability zone thickness (200–650 m) in the area. The 3D seismic data of Area B located in the ponded fill, west of Alcock Rise has been pre-stack depth migrated. A significant velocity inversion across the BSR (1,950–1,650 m/s) has been observed on the velocity model obtained from pre-stack depth migration. The areas with low velocity of the order of 1,450 m/s below the BSR and high amplitudes indicate presence of dissociated or free gas beneath the hydrate layer. The amplitude variation with offset analysis of BSR depicts increase in amplitude with offset, a similar trend as observed for the BSR associated with the gas hydrate accumulations. The presence of gas hydrate shown by logging results from a drilled well for hydrocarbon exploration in Area B, where gas hydrate deposit was predicted from seismic evidence, validate our findings. The base of the hydrate layer derived from the resistivity and acoustic transit-time logs is in agreement with the depth of hydrate layer interpreted from the pre-stack depth migrated seismic section. The resistivity and acoustic transit-time logs indicate 30-m-thick hydrate layer at the depth interval of 1,865–1,895 m with 30 % hydrate saturation. The total hydrate bound gas in Area B is estimated to be 1.8 × 1010 m3, which is comparable (by volume) to the reserves in major conventional gas fields.  相似文献   
156.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two-stage light-gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane-driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high-temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.  相似文献   
157.
158.
A self-similar solution to Sedov’s problem of a strong explosion in a homogeneous medium is generalized to the case of relativistic-particle generation in a supernova remnant; the particles are accelerated by Fermi’s mechanism at the shock front and in the perturbed post-shock region. Self-similarity takes place if the thickness of the prefront is small compared to its radius and if the pressure ratio of the relativistic and nonrelativistic components at the shock front is kept constant. In the presence of relativistic particles, the time dependence of the shock-front radius remains the same as that in their absence, but the plasma parameters in the inner perturbed region change appreciably. The shell of the matter raked up by the explosion is denser and thinner than that in the nonrelativistic case, the relativistic-particle pressure in the central region remains finite, and the nonrelativistic-gas pressure at the explosion center approaches zero. The influence of relativistic particles on the transition to the radiative phase of expansion of the supernova remnant and on its dynamics is studied. It is shown that relativistic particles can decrease several-fold the remnant radius at which the transition to the radiative phase occurs.  相似文献   
159.
The Ginzburg-Landau equations are derived for the magnetic and gluomagnetic gauge fields in the color superconducting core of a neutron star containing a CFL-condensate of diquarks. The interaction of the diquark CFL-condensate with the magnetic and gluomagnetic gauge fields is taken into account. The behavior of the magnetic field in a neutron star is studied by solving the Ginzburg-Landau equations taking correct account of the boundary conditions, including the gluon confinement conditions. The magnetic field distribution in the quark and hadronic phases of a neutron star is found. It is shown that a magnetic field generated in the hadronic phase by the entrainment effect penetrates into the quark core in the form of quark vortex filaments because of the presence of screening Meissner currents. __________ Translated from Astrofizika, Vol. 50, No. 1, pp. 87–98 (February 2007).  相似文献   
160.
We present the results of our systematic study of the long-period orbital evolution of all of the outer Saturnian, Uranian, and Neptunian satellites known to date. The plots of the orbital elements against time give a clear idea of the pattern of the orbital evolution of each satellite. The tabular data allow us to estimate the basic parameters of the evolving orbits, including the ranges of variation in the semimajor axes, eccentricities, and ecliptical inclinations as well as the variation periods and mean motions of the arguments of pericenters and the longitudes of the nodes. We compare the results obtained by numerically integrating the rigorous equations of the perturbed motion of the satellites with the analytical and numerical-analytical results. The satellite orbits with a librational pattern of variation in the arguments of pericenters are set apart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号