首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38482篇
  免费   580篇
  国内免费   379篇
测绘学   833篇
大气科学   2438篇
地球物理   7024篇
地质学   14794篇
海洋学   3840篇
天文学   8792篇
综合类   114篇
自然地理   1606篇
  2022年   387篇
  2021年   579篇
  2020年   634篇
  2019年   700篇
  2018年   1439篇
  2017年   1320篇
  2016年   1494篇
  2015年   687篇
  2014年   1353篇
  2013年   2146篇
  2012年   1483篇
  2011年   1851篇
  2010年   1672篇
  2009年   2042篇
  2008年   1759篇
  2007年   1833篇
  2006年   1677篇
  2005年   1045篇
  2004年   974篇
  2003年   901篇
  2002年   916篇
  2001年   824篇
  2000年   779篇
  1999年   603篇
  1998年   638篇
  1997年   595篇
  1996年   491篇
  1995年   467篇
  1994年   481篇
  1993年   378篇
  1992年   357篇
  1991年   373篇
  1990年   407篇
  1989年   284篇
  1988年   297篇
  1987年   360篇
  1986年   287篇
  1985年   415篇
  1984年   370篇
  1983年   355篇
  1982年   355篇
  1981年   280篇
  1980年   330篇
  1979年   274篇
  1978年   295篇
  1977年   236篇
  1976年   221篇
  1975年   233篇
  1974年   230篇
  1973年   227篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
951.
The chemical status of major and trace elements (TE) in various boreal small rivers and watershed has been investigated along a 1500-km transect of NW Russia. Samples were filtered in the field through a progressively decreasing pore size (5, 0.8 and 0.22 μm; 100, 10, and 1 kD) using a frontal filtration technique. All major and trace elements and organic carbon (OC) were measured in filtrates and ultrafiltrates. Most rivers exhibit high concentration of dissolved iron (0.2–4 mg/l), OC (10–30 mg/l) and significant amounts of trace elements usually considered as immobile in weathering processes (Ti, Zr, Th, Al, Ga, Y, REE, V, Pb). In (ultra)filtrates, Fe and OC are poorly correlated: iron concentration gradually decreases upon filtration from 5 μm to 1 kD whereas the major part of OC is concentrated in the <1–10 kD fraction. This reveals the presence of two pools of colloids composed of organic-rich and Fe-rich particles. According to their behavior during filtration and association with these two types of colloids, three groups of elements can be distinguished: (i) species that are not affected by ultrafiltration and are present in the form of true dissolved inorganic species (Ca, Mg, Li, Na, K, Sr, Ba, Rb, Cs, Si, B, As, Sb, Mo) or weak organic complexes (Ca, Mg, Sr, Ba), (ii) elements present in the fraction smaller than 1–10 kD prone to form inorganic or organic complexes (Mn, Co, Ni, Zn, Cu, Cd, and, for some rivers, Pb, Cr, Y, HREE, U), and (iii) elements strongly associated with colloidal iron in all ultrafiltrates (P, Al, Ga, REE, Pb, V, Cr, W, Ti, Ge, Zr, Th, U). Based on size fractionation results and taking into account the nominal pore size for membranes, an estimation of the effective surface area of Fe colloids was performed. Although the total amount of available surface sites on iron colloids (i.e., 1–10 μM) is enough to accommodate the nanomolar concentrations of dissolved trace elements, very poor correlation between TE and surface sites concentrations was observed in filtrates and ultrafiltrates. This strongly suggests a preferential transport of TE as coprecipitates with iron oxy(hydr)oxides. These colloids can be formed on redox boundaries by precipitation of Fe(III) from inflowing Fe(II)/TE-rich anoxic ground waters when they meet well-oxygenated surface waters. Dissolved organic matter stabilizes these colloids and prevents their aggregation and coagulation. Estuarine behavior of several trace elements was studied for two small iron- and organic-rich rivers. While Si, Sr, Ba, Rb, and Cs show a clear conservative behavior during mixing of freshwaters with the White sea, Al, Pb and REE are scavenged with iron during coagulation of Fe hydroxide colloids.  相似文献   
952.
We have experimentally studied the formation of diamonds in alkaline carbonate–carbon and carbonate–fluid–carbon systems at 5.7–7.0 GPa and 1150–1700 °C, using a split-sphere multi-anvil apparatus (BARS). The starting carbonate and fluid-generating materials were placed into Pt and Au ampoules. The main specific feature of the studied systems is a long period of induction, which precedes the nucleation and growth of diamonds. The period of induction considerably increases with decreasing P and T, but decreases when adding a C–O–H fluid to the system. In the range of P and T corresponding to the formation of diamonds in nature, this period lasts for tens of hours. The reactivity of the studied systems with respect to the diamond nucleation and growth decreases in this sequence: Na2CO3–H2C2O4·2H2O–C>K2CO3–H2C2O4·2H2O–C>>Na2CO3–C>K2CO3–C. The diamond morphology is independent of P and T, and is mainly governed by the composition of the crystallization medium. The stable growth form is a cubo-octahedron in the Na2CO3 melt, and an octahedron in the K2CO3 melt. Regardless of the composition of the carbonate melt, only octahedral diamond crystals formed in the presence of the C–O–H fluid. The growth rates of diamond varied in the range from 1.7 μm/h at 1420 °C to 0.1–0.01 μm/h at 1150 °C, and were used to estimate, for the first time, the possible duration of the crystallization of natural diamonds. From the analysis of the experimental results and the petrological evidence for the formation of diamonds in nature, we suggest that fluid-bearing alkaline carbonate melts are, most likely, the medium for the nucleation and growth of diamonds in the Earth's upper mantle.  相似文献   
953.
954.
955.
956.
During the Devonian magmatism (370 Ma ago) ∼20 ultrabasic-alkaline-carbonatite complexes (UACC) were formed in the Kola Peninsula (north-east of the Baltic Shield). In order to understand mantle and crust sources and processes having set these complexes, rare gases were studied in ∼300 rocks and mineral separates from 9 UACC, and concentrations of parent Li, K, U, and Th were measured in ∼70 samples. 4He/3He ratios in He released by fusion vary from pure radiogenic values ∼108 down to 6 × 104. The cosmogenic and extraterrestrial sources as well as the radiogenic production are unable to account for the extremely high abundances of 3He, up to 4 × 10−9 cc/g, indicating a mantle-derived fluid in the Kola rocks. In some samples helium extracted by crushing shows quite low 4He/3He = 3 × 104, well below the mean ratio in mid ocean ridge basalts (MORB), (8.9 ± 1.0) × 104, indicating the contribution of 3He-rich plume component. Magnetites are principal carriers of this component. Trapped 3He is extracted from these minerals at high temperatures 1100°C to 1600°C which may correspond to decrepitation or annealing primary fluid inclusions, whereas radiogenic 4He is manly released at a temperature range of 500°C to 1200°C, probably corresponding to activation of 4He sites degraded by U, Th decay.Similar 4He/3He ratios were observed in Oligocene flood basalts from the Ethiopian plume. According to a paleo-plate-tectonic reconstruction, 450 Ma ago the Baltica (including the Kola Peninsula) continent drifted not far from the present-day site of that plume. It appears that both magmatic provinces could relate to one and the same deep-seated mantle source.The neon isotopic compositions confirm the occurrence of a plume component since, within a conventional 20Ne/22Ne versus 21Ne/22Ne diagram, the regression line for Kola samples is indistinguishable from those typical of plumes, such as Loihi (Hawaii). 20Ne/22Ne ratios (up to 12.1) correlate well with 40Ar/36Ar ones, allowing to infer a source 40Ar/36Ar ratio of about 4000 for the mantle end-member, which is 10 times lower than that of the MORB source end-member. In (3He/22Ne)PRIM versus (4He/21Ne)RAD plot the Kola samples are within array established for plume and MORB samples; almost constant production ratio of (4He/21Ne)RAD ≅ 2 × 107 is translated via this array into (3He/22Ne)PRIM ∼ 10. The latter value approaches the solar ratio implying the non-fractionated solar-like rare gas pattern in a plume source.The Kola UACC show systematic variations in the respective contributions of in situ-produced radiogenic isotopes and mantle-derived isotopes. Since these complexes were essentially plutonic, we propose that the depth of emplacement exerted a primary control on the retention of both trapped and radiogenic species, which is consistent with geological observations. The available data allow to infer the following sequence of processes for the emplacement and evolution of Kola Devonian UACC: 1) Ascent of the plume from the lower mantle to the subcontinental lithosphere; the plume triggered mantle metasomatism not later than ∼700 to 400 Ma ago. 2) Metasomatism of the lithosphere (beneath the central part of the Kola Peninsula), including enrichment in volatile (e.g., He, Ne) and in incompatible (e.g., U, Th) elements. 3) Multistage intrusions of parental melts, their degassing, and crystallisation differentiation ∼370 Ma ago. 4) Postcrystallisation migration of fluids, including loss of radiogenic and of trapped helium. Based on model compositions of the principle terrestrial reservoirs we estimate the contributions (by mass) of the plume material, the upper mantle material, and the atmosphere (air-saturated groundwater), into the source of parent melt at ∼2%, 97.95%, and ∼0.05%, respectively.  相似文献   
957.
Liquidus phase relationships have been determined for a high-MgO basalt (STV301: MgO=12.5 wt%, Ni=250 ppm, Cr=728 ppm) from Black Point, St Vincent (Lesser Antilles arc). Piston-cylinder experiments were conducted between 7.5 and 20 kbar under both hydrous and oxidizing conditions. AuPd capsules were used as containers. Compositions of supraliquidus glasses and mass-balance calculations show that Fe loss is < 10% in the majority of experiments. Two series of water concentrations in melt were investigated: (i) 1.5 wt% and (ii) 4.5 wt% H2O, as determined by SIMS analyses on quenched glasses and with the by difference technique. The Fe3+/Fe2+ partitioning between Cr-Al spinel and melt and olivine-spinel equilibria show that oxidizing fO2 were imposed (NNO + 1.5 for the 1.5 wt% H2O series, NNO + 2.3 for the 4.5 wt% H2O series). For both series of water concentrations, the liquid is multiply-saturated with a spinel lherzolite phase assemblage on its liquidus, at 1235°C, 11.5 kbar (1.5 wt% H2O) and 1185°C, 16 kbar (4.5 wt% H2O). Liquidus phases are homogeneous and comparable to typical mantle compositions. Mineral-melt partition coefficients are generally identical to values under anhydrous conditions. The modal proportion cpx/opx on the liquidus decreases from the 1.5 wt% to the 4.5 wt% H2O series. The experimental data are consistent with STV301 being a product of partial melting of lherzolitic mantle. Conditions of multiple saturation progressively evolve toward lower temperatures and higher pressures with increasing melt H2O concentration. Phase equilibria constraints, i.e., the necessity of preserving the mantle signature seen in high-MgO and picritic arc basalts, and glass inclusion data suggest that STV301 was extracted relatively dry (∼ 2 wt% H2O) from its mantle source. However, not all primary arc basalts are extracted under similarly dry conditions because more hydrous melts will crystallize during ascent and will not be present unmodified at the surface. From degrees of melting calculated from experiments on KLB-1, extraction of a 12.5 wt% MgO melt with ∼ 2 wt% H2O would require a H2O concentration of 0.3 wt% in the sub-arc mantle. For mantle sources fluxed with a slab-derived hydrous component, extracted melts may contain up to ∼ 5.5 wt% H2O.  相似文献   
958.
A suite of 47 carbonaceous, enstatite, and ordinary chondrites are examined for Re-Os isotopic systematics. There are significant differences in the 187Re/188Os and 187Os/188Os ratios of carbonaceous chondrites compared with ordinary and enstatite chondrites. The average 187Re/188Os for carbonaceous chondrites is 0.392 ± 0.015 (excluding the CK chondrite, Karoonda), compared with 0.422 ± 0.025 and 0.421 ± 0.013 for ordinary and enstatite chondrites (1σ standard deviations). These ratios, recast into elemental Re/Os ratios, are as follows: 0.0814 ± 0.0031, 0.0876 ± 0.0052 and 0.0874 ± 0.0027, respectively. Correspondingly, the 187Os/188Os ratios of carbonaceous chondrites average 0.1262 ± 0.0006 (excluding Karoonda), and ordinary and enstatite chondrites average 0.1283 ± 0.0017 and 0.1281 ± 0.0004, respectively (1σ standard deviations). The new results indicate that the Re/Os ratios of meteorites within each group are, in general, quite uniform. The minimal overlap between the isotopic compositions of ordinary and enstatite chondrites vs. carbonaceous chondrites indicates long-term differences in Re/Os for these materials, most likely reflecting chemical fractionation early in solar system history.A majority of the chondrites do not plot within analytical uncertainties of a 4.56-Ga reference isochron. Most of the deviations from the isochron are consistent with minor, relatively recent redistribution of Re and/or Os on a scale of millimeters to centimeters. Some instances of the redistribution may be attributed to terrestrial weathering; others are most likely the result of aqueous alteration or shock events on the parent body within the past 2 Ga.The 187Os/188Os ratio of Earth’s primitive upper mantle has been estimated to be 0.1296 ± 8. If this composition was set via addition of a late veneer of planetesimals after core formation, the composition suggests the veneer was dominated by materials that had Re/Os ratios most similar to ordinary and enstatite chondrites.  相似文献   
959.
Although a number of methods for calculating dynamic pseudo-functions have been developed over the years, there is still a lack of understanding as to why a certain method will succeed in some cases but fail in others. In this paper, we describe the results of an assessment of several upscaling methods, namely the Kyte and Berry (KB) method, the Stone method, the Hewett and Archer (HA) method and the Transmissibility-Weighted (TW) method. We have analyzed the equations for deriving the methods and investigated the results of numerical simulations of gas displacing oil, in a variety of models to enable us to gain new insights into these, and related, upscaling methods. In particular, some novel observations on methods based on fluid potential are presented and the issue of using predicted fluid mobilities as a criterion of accuracy of an upscaling method is clarified.  相似文献   
960.
Combining a geological model with a geomechanical model, it generally turns out that the geomechanical model is built from units that are at least a 100 times larger in volume than the units of the geological model. To counter this mismatch in scales, the geological data model's heterogeneous fine-scale Young's moduli and Poisson's ratios have to be “upscaled” to one “equivalent homogeneous” coarse-scale rigidity. This coarse-scale rigidity relates the volume-averaged displacement, strain, stress, and energy to each other, in such a way that the equilibrium equation, Hooke's law, and the energy equation preserve their fine-scale form on the coarse scale. Under the simplifying assumption of spatial periodicity of the heterogeneous fine-scale rigidity, homogenization theory can be applied. However, even then the spatial variability is generally so complex that exact solutions cannot be found. Therefore, numerical approximation methods have to be applied. Here the node-based finite element method for the displacement as primary variable has been used. Three numerical examples showing the upper bound character of this finite element method are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号