首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68651篇
  免费   1076篇
  国内免费   635篇
测绘学   1606篇
大气科学   4508篇
地球物理   13326篇
地质学   24971篇
海洋学   6269篇
天文学   16157篇
综合类   214篇
自然地理   3311篇
  2022年   494篇
  2021年   777篇
  2020年   901篇
  2019年   931篇
  2018年   1993篇
  2017年   1861篇
  2016年   2186篇
  2015年   1162篇
  2014年   2090篇
  2013年   3677篇
  2012年   2296篇
  2011年   2964篇
  2010年   2678篇
  2009年   3442篇
  2008年   2897篇
  2007年   2973篇
  2006年   2740篇
  2005年   1903篇
  2004年   1840篇
  2003年   1714篇
  2002年   1678篇
  2001年   1526篇
  2000年   1432篇
  1999年   1198篇
  1998年   1235篇
  1997年   1184篇
  1996年   1023篇
  1995年   989篇
  1994年   937篇
  1993年   782篇
  1992年   749篇
  1991年   750篇
  1990年   846篇
  1989年   675篇
  1988年   656篇
  1987年   815篇
  1986年   668篇
  1985年   886篇
  1984年   921篇
  1983年   874篇
  1982年   816篇
  1981年   766篇
  1980年   704篇
  1979年   642篇
  1978年   655篇
  1977年   564篇
  1976年   566篇
  1975年   565篇
  1974年   536篇
  1973年   564篇
排序方式: 共有10000条查询结果,搜索用时 578 毫秒
891.
Among the assumptions upon which linear time-invariant models of floating bodies are based is that the body motions are so small that any change in the body’s angular position can be disregarded. However, it is often a major design requirement of a wave energy conversion device that the response amplitude is large, thereby invalidating one of the assumptions of the linear model. In particular, the immersed geometry of a body undergoes considerable variation when it is moved in pitch. With regard to this we investigate the difference in performance between a quasi-linear model in which the change of immersed surface is modelled by time-varying parameters and a basic linear model in which the immersed surface is time-invariant. The time-varying parameter model is realized by interpolation between the appropriate parameter values of a set of linear time-invariant (LTI) models derived for the different immersed surfaces that occur at discrete body displacements. It is shown that the responses predicted using the time-varying parameter model are closer to those measured experimentally than those of a standard frequency-domain model. Particular improvement occurs when the responses are large, such as at or near the resonance frequency. A problem which may limit the general use of the model is also discussed.  相似文献   
892.
893.
894.
1Introduction ThemajorityofAustralia’sabalonefisheryex ports(5.135kt,worth$216millionin2002~2003,ABARE2004)consistofblacklipabalone(HaliotisrubraLeach,1814).AssuchH.rubrais consideredasanimportantmarineresourcewithin Australia.Likemanyabalonespecieswor…  相似文献   
895.
An assessment is made of the maximum wave induced bending moment expected to occur during the operational lifetime of a fast monohull, based on long term distribution calculations of the non-linear vertical bending moment at mid-ship. The ship is assumed to operate in the Northern North Sea, with an operational life of 25 years. A succession of short-term stationary ship responses represented by Rayleigh distributions of peaks results in the long-term distribution of the structural loads. Non-linear pseudo transfer functions are used in the procedure to calculate the variances of the short-term responses. The amplitudes of these transfer functions are calculated by a non-linear time domain seakeeping program. The results are compared with rules minimum required values and also with results from simpler calculation procedures such as adopting design sea states.  相似文献   
896.
In 2001 and 2002, Australia acquired an integrated geophysical data set over the deep-water continental margin of East Antarctica from west of Enderby Land to offshore from Prydz Bay. The data include approximately 7700 km of high-quality, deep-seismic data with coincident gravity, magnetic and bathymetry data, and 37 non-reversed refraction stations using expendable sonobuoys. Integration of these data with similar quality data recorded by Japan in 1999 allows a new regional interpretation of this sector of the Antarctic margin. This part of the Antarctic continental margin formed during the breakup of the eastern margin of India and East Antarctica, which culminated with the onset of seafloor spreading in the Valanginian. The geology of the Antarctic margin and the adjacent oceanic crust can be divided into distinct east and west sectors by an interpreted crustal boundary at approximately 58° E. Across this boundary, the continent–ocean boundary (COB), defined as the inboard edge of unequivocal oceanic crust, steps outboard from west to east by about 100 km. Structure in the sector west of 58° E is largely controlled by the mixed rift-transform setting. The edge of the onshore Archaean–Proterozoic Napier Complex is downfaulted oceanwards near the shelf edge by at least 6 km and these rocks are interpreted to underlie a rift basin beneath the continental slope. The thickness of rift and pre-rift rocks cannot be accurately determined with the available data, but they appear to be relatively thin. The margin is overlain by a blanket of post-rift sedimentary rocks that are up to 6 km thick beneath the lower continental slope. The COB in this sector is interpreted from the seismic reflection data and potential field modelling to coincide with the base of a basement depression at 8.0–8.5 s two-way time, approximately 170 km oceanwards of the shelf-edge bounding fault system. Oceanic crust in this sector is highly variable in character, from rugged with a relief of more than 1 km over distances of 10–20 km, to rugose with low-amplitude relief set on a long-wavelength undulating basement. The crustal velocity profile appears unusual, with velocities of 7.6–7.95 km s−1 being recorded at several stations at a depth that gives a thickness of crust of only 4 km. If these velocities are from mantle, then the thin crust may be due to the presence of fracture zones. Alternatively, the velocities may be coming from a lower crust that has been heavily altered by the intrusion of mantle rocks. The sector east of 58° E has formed in a normal rifted margin setting, with complexities in the east from the underlying structure of the N–S trending Palaeozoic Lambert Graben. The Napier Complex is downfaulted to depths of 8–10 km beneath the upper continental slope, and the margin rift basin is more than 300 km wide. As in the western sector, the rift-stage rocks are probably relatively thin. This part of the margin is blanketed by post-rift sediments that are up to about 8 km thick. The interpreted COB in the eastern sector is the most prominent boundary in deep water, and typically coincides with a prominent oceanwards step-up in the basement level of up to 1 km. As in the west, the interpretation of this boundary is supported by potential field modelling. The oceanic crust adjacent to the COB in this sector has a highly distinctive character, commonly with (1) a smooth upper surface underlain by short, seaward-dipping flows; (2) a transparent upper crustal layer; (3) a lower crust dominated by dipping high-amplitude reflections that probably reflect intruded or altered shears; (4) a strong reflection Moho, confirmed by seismic refraction modelling; and (5) prominent landward-dipping upper mantle reflections on several adjacent lines. A similar style of oceanic crust is also found in contemporaneous ocean basins that developed between Greater India and Australia–Antarctica west of Bruce Rise on the Antarctic margin, and along the Cuvier margin of northwest Australia.  相似文献   
897.
Atmospheric input of Pb to coastal sediments in the south-east Pacific (approximately 36 degrees S) was estimated using: (1) a salt marsh (non-local emission sources) as a natural collector of atmospheric fluxes and (2) Pb concentrations in rain and air samples, both considered to be representative of the atmospheric input in the study area. A radioisotopic geochronology technique ((210)Pb) was used to estimate the total Pb atmospheric supply to the sediments. The results show that atmospheric input to Concepción Bay accounts for 13-68% of Pb in near shore sediments, evaluated through salt marsh and rain, both showing comparable results. Consequently, there are other relevant Pb sources to explain the higher concentrations in this area. Sediments in the shelf are subject to important influence of upwelling waters, estimated by Salamanca [Sources and sinks of (210)Pb in Concepción Bay, Chile (1993) PhD thesis, Marine Science Research Center, State University of New York at Stony Brook, USA] using (210)Pb. The atmospheric input, however, is mainly responsible for the total Pb input, since the salt marsh (natural atmospheric collector) shows similar Pb(xs) inventories than the shelf, corresponding to a regional-scale Pb emissions.  相似文献   
898.
899.
Magnetic anomalies over Iceland, measured by Serson et al. (1968), are similar in shape and amplitude to those found over mid-oceanic ridges in general and over Reykjanes Ridge in particular. However, the geology of Iceland does not favour the simple model of sea floor spreading as formulated by Vine and Matthews. The Brunhes period volcanism can neither in place nor in time be related to an opening process of the Central Graben, which actually is a downthrown block and not an opening rift. Furthermore, the structure of Iceland is not symmetric with respect to the Central Graben. The geology of the Central Graben of Iceland does support a model proposed by Thorleifur Einarsson in 1967. In this model elongate ridges of pillow lavas are thought to have piled up on top of parallel volcanic fissures. The actual spreading is negligible. The fissures have been opening at random over a width of about 120 km, and no definite time scale can be set up for the associated magnetic anomalies. This conflict between Icelandic geology and the current views on sea floor spreading, can be evaded by supposing that the mere circumstance that Iceland is an island obscures a spreading process underneath. One might also postulate that Iceland nevertheless should stand as an example of a mid-oceanic ridge which implies that our ideas on sea floor spreading should be thoroughly revised.  相似文献   
900.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号