首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101171篇
  免费   1725篇
  国内免费   804篇
测绘学   2179篇
大气科学   6680篇
地球物理   19367篇
地质学   36643篇
海洋学   9354篇
天文学   23635篇
综合类   271篇
自然地理   5571篇
  2022年   723篇
  2021年   1214篇
  2020年   1339篇
  2019年   1459篇
  2018年   2992篇
  2017年   2790篇
  2016年   3256篇
  2015年   1672篇
  2014年   3129篇
  2013年   5401篇
  2012年   3394篇
  2011年   4394篇
  2010年   3974篇
  2009年   5016篇
  2008年   4390篇
  2007年   4488篇
  2006年   4176篇
  2005年   2962篇
  2004年   2868篇
  2003年   2684篇
  2002年   2662篇
  2001年   2328篇
  2000年   2275篇
  1999年   1818篇
  1998年   1891篇
  1997年   1749篇
  1996年   1497篇
  1995年   1483篇
  1994年   1313篇
  1993年   1201篇
  1992年   1136篇
  1991年   1158篇
  1990年   1161篇
  1989年   982篇
  1988年   923篇
  1987年   1095篇
  1986年   929篇
  1985年   1184篇
  1984年   1283篇
  1983年   1231篇
  1982年   1142篇
  1981年   1040篇
  1980年   976篇
  1979年   890篇
  1978年   886篇
  1977年   746篇
  1976年   753篇
  1975年   730篇
  1974年   709篇
  1973年   785篇
排序方式: 共有10000条查询结果,搜索用时 531 毫秒
821.
The paper is devoted to the conditions under which opacite rims developed around hornblende grains in andesite of the catastrophic eruption (March 30, 1956) of Bezymyannyi volcano, Kamchatka. The opacite rims were produced by a bimetasomatic reaction between hornblende and melt with the development of the following zoning: hornblende → Px + Pl + Ti-MagPx + PlPx → melt. Biometasomatic reaction was accompanied by the active removal of CaO from the rim, addition of SiO2, and more complicated behavior of other components. The hornblende also shows reactions of its volumetric decomposition under near-isochemical conditions. The opacite rims developed under isobaric conditions, at a pressure of approximately 6 kbar. The main reason for the instability of the hornblende was the heating of the magma chamber from 890 to 1005°C due to new hot magma portion injection. The time interval between the injection and the start of eruption was estimated from the thickness of the opacite rims and did not exceed 37 days. Hence, the March 30, 1956, eruption was not related to the volcanic activity in November of 1955 but to the injection of a fresh magma portion in February–March of 1956.  相似文献   
822.
Melt inclusions were examined in phenocrysts in basalt, andesite, dacite, and rhyodacite from the Karymskii volcanic center in Kamchatka and dacite form Golovnina volcano in Kunashir Island, Kuriles. The inclusions were examined by homogenization and by analyzing glasses in more than 80 inclusions on an electron microscope and ion microprobe. The SiO2 concentrations in the melt inclusions in plagioclase phenocrysts from basalts from the Karymskii volcanic center vary from 47.4 to 57.1 wt %, these values for inclusions in plagioclase phenocrysts from andesites are 55.7–67.1 wt %, in plagioclase phenocrysts from the dacites and rhyodacites are 65.9–73.1 wt %, and those in quartz in the rhyodacites are 72.2–75.7 wt %. The SiO2 concentrations in melt inclusions in quartz from dacites from Golovnina volcano range from 70.2 to 77.0 wt %. The basaltic melts are characterized by usual concentrations of major components (wt %): TiO2 = 0.7–1.3, FeO = 6.8–11.4, MgO = 2.3–6.1, CaO = 6.7–10.8, and K2O = 0.4–1.7; but these rocks are notably enriched in Na2O (2.9–7.4 wt % at an average of 5.1 wt %, with the highest Na2O concentration detected in the most basic melts: SiO2 = 47.4–52.0 wt %. The concentrations of volatiles in the basic melts are 1.6 wt % for H2O, 0.14 wt % for S, 0.09 wt % for Cl, and 50 ppm for F. The andesite melts are characterized by high concentrations (wt %) of FeO (6.5 on average), CaO (5.2), and Cl (0.26) at usual concentrations of Na2O (4.5), K2O (2.1), and S (0.07). High water concentrations were determined in the dacite and rhyodacite melts: from 0.9 to 7.3 wt % (average of 15 analyses equals 4.5 wt %). The Cl concentration in these melts is 0.15 wt %, and those of F and S are 0.06 and 0.01 wt %, respectively. Melt inclusions in quartz from the dacites of Golovnina volcano are also rich in water: they contain from 5.0 to 6.7 wt % (average 5.6 wt %). The comparison of melt compositions from the Karymskii volcanic center and previously studied melts from Bezymyannyi and Shiveluch volcanoes revealed their significant differences. The former are more basic, are enriched in Ti, Fe, Mg, Ca, Na, and P but significantly depleted in K. The melts of the Karymskii volcanic center are most probably less differentiated than the melts of Bezymyannyi and Shiveluch volcanoes. The concentrations of water and 20 trace elements were measured in the glasses of 22 melt inclusions in plagioclase and quartz from our samples. Unusually high values were obtained for Li concentrations (along with high Na concentrations) in the basaltic melts from the Karymskii volcanic center: from 118 to 1750 ppm, whereas the dacite and rhyolite melts contain 25 ppm Li on average. The rhyolite melts of Golovnina volcano are much poorer in Li: 1.4 ppm on average. The melts of the Karymskii volcanic center are characterized by relative minima at Nb and Ti and maxima at B and K, as is typical of arc magmas.  相似文献   
823.
824.
Complete hydrochemical data are rarely reported for coal-mine discharges (CMD). This report summarizes major and trace-element concentrations and loadings for CMD at 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania. Clean-sampling and low-level analytical methods were used in 1999 to collect data that could be useful to determine potential environmental effects, remediation strategies, and quantities of valuable constituents. A subset of 10 sites was resampled in 2003 to analyze both the CMD and associated ochreous precipitates; the hydrochemical data were similar in 2003 and 1999. In 1999, the flow at the 140 CMD sites ranged from 0.028 to 2210 L s−1, with a median of 18.4 L s−1. The pH ranged from 2.7 to 7.3; concentrations (range in mg/L) of dissolved (0.45-μm pore-size filter) SO4 (34–2000), Fe (0.046–512), Mn (0.019–74), and Al (0.007–108) varied widely. Predominant metalloid elements were Si (2.7–31.3 mg L−1), B (<1–260 μg L−1), Ge (<0.01–0.57 μg L−1), and As (<0.03–64 μg L−1). The most abundant trace metals, in order of median concentrations (range in μg/L), were Zn (0.6–10,000), Ni (2.6–3200), Co (0.27–3100), Ti (0.65–28), Cu (0.4–190), Cr (<0.5–72), Pb (<0.05–11) and Cd (<0.01–16). Gold was detected at concentrations greater than 0.0005 μg L−1 in 97% of the samples, with a maximum of 0.0175 μg L−1. No samples had detectable concentrations of Hg, Os or Pt, and less than half of the samples had detectable Pd, Ag, Ru, Ta, Nb, Re or Sn. Predominant rare-earth elements, in order of median concentrations (range in μg/L), were Y (0.11–530), Ce (0.01–370), Sc (1.0–36), Nd (0.006–260), La (0.005–140), Gd (0.005–110), Dy (0.002–99) and Sm (<0.005–79). Although dissolved Fe was not correlated with pH, concentrations of Al, Mn, most trace metals, and rare earths were negatively correlated with pH, consistent with solubility or sorption controls. In contrast, As was positively correlated with pH.  相似文献   
825.
High levels of Cd and Zn in Jamaican soils observed in geochemical surveys are related to the presence of phosphorites of possible Late-Miocene or Pliocene age. The trace element and REE geochemistry of the phosphorites, together with SEM studies, indicate a guano origin for the phosphorites. No specific host minerals for Cd could be identified in the fossiliferous phosphorite which is characterized by uniquely high levels of Cd, Zn, Ag, Be, U and Y. However, in the soil Cd is present in lithiophorite and a complex history of pedological development is preserved in the aluminous–goethite present in the soil. The unique guano signature is preserved in the soil despite the fact that guanos themselves have either not been observed or have been destroyed by continuing karst and soil development. The phosphorite geochemical signature can be traced in the data of a 1988 island-wide soil geochemical survey, identifying areas where the Palaeo-environment that supported bird ‘rookeries’ existed in the Late-Miocene or Pliocene.  相似文献   
826.
This paper reports new geochemical data on dissolved major and minor constituents in surface waters and ground waters collected in the Managua region (Nicaragua), and provides a preliminary characterization of the hydrogeochemical processes governing the natural water evolution in this area. The peculiar geological features of the study site, an active tectonic region (Nicaragua Depression) characterized by active volcanism and thermalism, combined with significant anthropogenic pressure, contribute to a complex evolution of water chemistry, which results from the simultaneous action of several geochemical processes such as evaporation, rock leaching, mixing with saline brines of natural or anthropogenic origin. The effect of active thermalism on both surface waters (e.g., saline volcanic lakes) and groundwaters, as a result of mixing with variable proportions of hyper-saline geothermal Na–Cl brines (e.g., Momotombo geothermal plant), accounts for the high salinities and high concentrations of many environmentally-relevant trace elements (As, B, Fe and Mn) in the waters. At the same time the active extensional tectonics of the Managua area favour the interaction with acidic, reduced thermal fluids, followed by extensive leaching of the host rock and the groundwater release of toxic metals (e.g., Ni, Cu). The significant pollution in the area, deriving principally from urban and industrial waste-water, probably also contributes to the aquatic cycling of many trace elements, which attain concentrations above the WHO recommended limits for the elements Ni (∼40 μg/l) and Cu (∼10 μg/l) limiting the potential utilisation of Lake Xolotlan for nearby Managua.  相似文献   
827.
828.
829.
830.
The importance or otherwise of rice as an exposure pathway for As ingestion by people living in Bengal and other areas impacted by hazardous As-bearing groundwaters is currently a matter of some debate. Here this issue is addressed by determining the overall increased cancer risk due to ingestion of rice in an As-impacted district of West Bengal. Human target cancer health risks have been estimated through the intake of As-bearing rice by using combined field, laboratory and computational methods. Monte Carlo simulations were run following fitting of model probability curves to measured distributions of (i) As concentration in rice and drinking water and (ii) inorganic As content of rice and fitting distributions to published data on (i) ingestion rates and (ii) body weight and point estimates on bioconcentration factors, exposure duration and other input variables. The distribution of As in drinking water was found to be substantially lower than that reported by previous authors for As in tube wells in the same area, indicating that the use of tube well water as a proxy for drinking water is likely to result in human health risks being somewhat overestimated. The calculated median increased lifetime cancer risk due to cooked rice intake was 7.62 × 10−4, higher than the 10−4–10−6 range typically used by the USEPA as a threshold to guide determination of regulatory values and similar to the equivalent risk from water intake. The median total risk from combined rice and water intake was 1.48 × 10−3. The contributions to this median risk from drinking water, rice and cooking of rice were found to be 48%, 44% and 8%, respectively. Thus, rice is a major potential source of As exposure in the As-affected study areas in West Bengal and the most important exposure pathway for groups exposed to low or no As in drinking water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号