首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   14篇
测绘学   6篇
大气科学   10篇
地球物理   64篇
地质学   103篇
海洋学   12篇
天文学   9篇
综合类   4篇
自然地理   10篇
  2023年   1篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   20篇
  2017年   9篇
  2016年   20篇
  2015年   10篇
  2014年   15篇
  2013年   16篇
  2012年   13篇
  2011年   14篇
  2010年   10篇
  2009年   12篇
  2008年   14篇
  2007年   10篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1995年   3篇
  1983年   2篇
  1980年   1篇
  1971年   1篇
  1970年   2篇
  1968年   2篇
排序方式: 共有218条查询结果,搜索用时 296 毫秒
21.
22.
Climate change in Turkey for the last half century   总被引:1,自引:0,他引:1  
Climate change and its urban-induced bias in selected Turkish cities is studied with a quality controlled temperature and precipitation data of Turkish stations in the period of 1950–2004. These stations are classified into two groups according to their populations; S1, including rural and suburban stations and S2, including large urban stations. Moving average signals, 365-day, and their digital low pass filtered versions are produced to eliminate the short term fluctuations and examine the possible trends or anomalies in climate data. Furthermore, ‘relative difference’ signals are introduced and applied to temperature and precipitation series to observe the actual local changes in the climate data independent from large-scale effects. Mann–Kendall test statistics are calculated for maximum, minimum, mean temperature and precipitation series and plotted on maps to determine any spatial trend patterns. Signal analysis show a cool period extending from early 1960s till 1993, generally with the lowest temperature values on 1992–1993 owing to the eruption of Mount Pinatubo. A last decade significant warming trend is observed in both of the series, S1 and S2, leading to 2000–2002 temperatures to be recorded as maximums in record history. The variability of urban precipitation series is generally larger than the rural ones, suggesting that urban stations can experience more frequent and severe droughts and floods. Though not significant, an increase in the urban precipitation compared to the rural one is also found. Spatial analysis resulted in significant warming in southern and southeastern parts of the country. Particularly, minimum temperature series show significant warming in almost all of the regions indicating the effect of urbanization. Significant decreases of precipitation amounts in the western parts of Turkey, such as Aegean and Trachea regions, are found. On the other hand, some Turkish northern stations show increases in precipitation of which some are significant.  相似文献   
23.
The analysis of rainfall frequency is an important step in hydrology and water resources engineering. However, a lack of measuring stations, short duration of statistical periods, and unreliable outliers are among the most important problems when designing hydrology projects. In this study, regional rainfall analysis based on L-moments was used to overcome these problems in the Eastern Black Sea Basin (EBSB) of Turkey. The L-moments technique was applied at all stages of the regional analysis, including determining homogeneous regions, in addition to fitting and estimating parameters from appropriate distribution functions in each homogeneous region. We studied annual maximum rainfall height values of various durations (5 min to 24 h) from seven rain gauge stations located in the EBSB in Turkey, which have gauging periods of 39 to 70 years. Homogeneity of the region was evaluated by using L-moments. The goodness-of-fit criterion for each distribution was defined as the ZDIST statistics, depending on various distributions, including generalized logistic (GLO), generalized extreme value (GEV), generalized normal (GNO), Pearson type 3 (PE3), and generalized Pareto (GPA). GLO and GEV determined the best distributions for short (5 to 30 min) and long (1 to 24 h) period data, respectively. Based on the distribution functions, the governing equations were extracted for calculation of intensities of 2, 5, 25, 50, 100, 250, and 500 years return periods (T). Subsequently, the T values for different rainfall intensities were estimated using data quantifying maximum amount of rainfall at different times. Using these T values, duration, altitude, latitude, and longitude values were used as independent variables in a regression model of the data. The determination coefficient (R 2) value indicated that the model yields suitable results for the regional relationship of intensity–duration–frequency (IDF), which is necessary for the design of hydraulic structures in small and medium sized catchments.  相似文献   
24.
Many catalogues, agency reports and research articles have been published on seismicity of Turkey and its surrounding since 1950s. Given existing magnitude heterogeneity, erroneous information on epicentral location, event date and time, this past published data however is far from fulfilling the required standards. Paucity of a standardized format in the available catalogues have reinforced the need for a refined and updated catalogue for earthquake related hazard and risk studies. During this study, ~37,000 earthquakes and related parametric data were evaluated by utilizing more than 41 published studies and, an integrated database was prepared in order to analyse all parameters acquired from the catalogues and references for each event. Within the scope of this study, the epicentral locations of M ≥ 5.0 events were firstly reappraised based on the updated Active Fault Map of Turkey. An improved catalogue of 12.674 events for the period 1900–2012 was as a result recompiled for the region between 32–45N° and 23–48E° by analyzing in detail accuracy of all seismological parameters available for each event. The events consist of M ≥ 4.0 are reported in several magnitude scales (e.g. moment magnitude, Mw; surface wave magnitude, MS; body-wave magnitude mb; local magnitude ML and duration magnitude Md) whereas the maximum focal depth reaches up to 225-km. In order to provide homogenous data, the improved catalogue is unified in terms of Mw. Fore-and aftershocks were also removed from the catalogue and completeness analyses were performed both separately for various tectonic sources and as a whole for the study region of interest. Thus, the prepared homogenous and declustered catalogue consisting of 6573 events provides the basis for a reliable input to the seismic hazard assessment studies for Turkey and its surrounding areas.  相似文献   
25.
26.
We have updated the active fault map of Turkey and built its database within GIS environment. In the study, four distinct active fault types, classified according to geochronological criteria and character, were delineated on the 1:25,000 base map of Turkey. 176 fault segments not included in the former active fault map of Turkey, have been identified and documented. We infer that there are 485 single fault segments which are substantially potential seismic sources. In total 1964 active-fault base-maps were transferred into the GIS environment. Each fault was attributed with key parameters such as class, activity, type, length, trend, and attitude of fault plane. The fault parameters are also supported by slip-rate and seismogenic depth inferred from available GPS, seismological and paleoseismological data. Additionally, expected maximum magnitude for each fault segment was estimated by empirical equations. We present the database in a parametric catalogue of fault segments to be of interest in earthquake engineering and seismotectonics. The study provides essential geological and seismological inputs for regional seismic hazard analysis of all over Turkey and its vicinity.  相似文献   
27.
This rebuttal was written in response to the rebuttal of the paper “choosing a municipal landfill site by analytic network process” published in 2007 by M. Sagir. This study was conducted as an application for the landfill site selection in the environmental engineering discipline. Since ANP was only the “instrument” used in our study, the details of this existing methodology were referenced, and not presented, due to page limitations and to match the content of the journal. Responses to M. Sagir’s comments are discussed within the body of this rebuttal.  相似文献   
28.
We determined the seismic model of the soil column within a residential project site in Istanbul, Turkey. Specifically, we conducted a refraction seismic survey at 20 locations using a receiver spread with 484.5-Hz vertical geophones at 2-m intervals. We applied nonlinear tomography to first-arrival times to estimate the P-wave velocity-depth profiles and performed Rayleigh-wave inversion to estimate the S-wave velocity-depth profiles down to a depth of 30 m at each of the locations. We then combined the seismic velocities with the geotechnical borehole information regarding the lithology of the soil column and determined the site-specific geotechnical earthquake engineering parameters for the site. Specifically, we computed the maximum soil amplification ratio, maximum surface-bedrock acceleration ratio, depth interval of significant acceleration, maximum soil-rock response ratio, and design spectrum periods TA-TB. We conducted reflection seismic surveys along five line traverses with lengths between 150 and 300 m and delineated landslide failure surfaces within the site. We recorded shot gathers at 2-m intervals along each of the seismic line traverses using a receiver spread with 4 840-Hz vertical geophones at 2-m intervals. We applied nonlinear tomograpby to first-arrival times to estimate a P-wave velocity-depth model and analyzed the reflected waves to obtain a seismic image of the deep near-surface along each of the line traverses.  相似文献   
29.
Novel approaches to the dynamic analysis of the reinforced soil walls have been reported in the literature. Use of marginal soils reduces the cost of geosynthetic reinforced soil walls if proper drainage measures are taken. Therefore the affect of using cohesive marginal soils as backfill in geosynthetic reinforced retaining structures were investigated in this research. The dynamic response of reinforced soil walls was investigated in a similar focus, using finite element analysis. The results obtained from walls with cohesive backfill were compared to the results obtained from walls with granular backfill. The height of the wall was chosen as 6 m in the two-dimensional plane strain finite element model and the base acceleration was chosen to be a harmonic motion. The effects of various parameters like the backfill type, facing type, reinforcement stiffness, and peak ground acceleration on the cyclic response of reinforced soil retaining walls were investigated. After analyzing the wall response for end of construction and dynamic excitation phases, it was determined that the deformations and reinforcement tensile loads increased during the cyclic load application and that the amount of additional deformation that occurred during cyclic load application was strongly related to backfill soil type, facing type, reinforcement type and peak ground acceleration. It was determined that a cohesive backfill and geotextile reinforcement was a good combination to reduce the deformations of geosynthetic reinforced walls during cyclic loading for medium height walls.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号