首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447篇
  免费   44篇
  国内免费   34篇
测绘学   9篇
大气科学   23篇
地球物理   120篇
地质学   283篇
海洋学   18篇
天文学   21篇
综合类   29篇
自然地理   22篇
  2024年   1篇
  2023年   8篇
  2022年   20篇
  2021年   46篇
  2020年   33篇
  2019年   26篇
  2018年   81篇
  2017年   42篇
  2016年   64篇
  2015年   37篇
  2014年   32篇
  2013年   42篇
  2012年   15篇
  2011年   20篇
  2010年   6篇
  2009年   12篇
  2008年   10篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1996年   3篇
  1995年   2篇
  1986年   3篇
排序方式: 共有525条查询结果,搜索用时 62 毫秒
11.

The Uromia–Dokhtar Magmatic Arc (UDMA) is a northwest–southeast trending magmatic belt which is formed due to oblique subduction of Neotethys underneath Central Iran and dominantly comprises magmatic rocks. The Jebal-e-Barez Plutonic Complex (JBPC) is located southeast of the UDMA and composed of quartz diorite, granodiorite, granite, and alkali granite. Magmatic enclaves, ranging in composition from felsic to mafic, are abundant in the studied rocks. Based on the whole rock and mineral chemistry study, the granitoids are typically medium-high K calc-alkaline and metaluminous to peraluminous that show characteristics of I-type granitoids. The high field strength (HFS) and large ionic radius lithophile (LIL) element geochemistry suggests fractional crystallization as a major process in the evolution of the JBPC. The tectonomagmatic setting of the granitoids is compatible with the arc-related granitic suite, a pre-plate collision granitic suite, and a syncollision granitic suite. Field observations and petrographic and geochemical studies suggest that the rocks in this area are I-type granitoids and continental collision granitoids (CCG), continental arc granitoids (CAG), and island arc granitoid (IAG) subsections. The geothermobarometry based on the electron probe microanalysis of amphibole, feldspars, and biotite from selected rocks of JBPC implies that the complex formed at high-level depths (i.e., 9–12 km; upper continental crust) and at temperatures ranging from 650 to 750 °C under oxidation conditions. It seems that JBPC is located within a shear zone period, and structural setting of JBPC is extensional shear fractures which are product of transpression tectonic regime. All available data suggested that these granitoids may be derived from a magmatic arc that was formed by northeastern ward subduction of the Neotethyan oceanic crust beneath the Central Iran in Paleogene and subsequent collision between the Arabian and Iranian plates in Miocene.

  相似文献   
12.
Facies and sequence stratigraphic analysis of the Kometan Formation (Upper Cretaceous) were studied from Kometan village, Kurdistan region of northeastern Iraq. Lithologically, the formation consists of 44 m of white weathering, light grey, thin to medium-bedded highly fractured limestones with chert nodules. Petrographic study of the carbonates shows that both skeletal and non-skeletal grains were present. The skeletal grains include a variety of planktonic foraminifera (including Oligostegina), calcispheres, ostracods, pelecypods, larva ammonite, and echinoderms. Non-skeletal grains include peloids only. Three main microfacies types are distinguished in the studied formation. The results of stable carbon and oxygen isotopes of the studied carbonate samples show negative values of δ18O. These indicate that the seawater was warm with low salinity during precipitation of the carbonates in the Kometan Formation in northeastern Iraq. The positive δ13C values of carbonate samples, in the middle part of the formation, reflect the widespread deposition of organic-rich marine sediments during a transgression and deepening of the basin. Petrographic, facies and stable isotopic analyses revealed that the Kometan Formation was deposited in a warm, basinal, pelagic (open marine) environment with low salinity. The Kometan Formation consists of one complete third-order depositional sequence, separated by a sequence boundary (SB) of type 2. The third-order sequence is subdivided into a transgressive systems tract (TST) and highstand systems tract (HST). This reflects episodes of transgression and still stands of the relative sea level. The TSTs are topped by maximum flooding surface (MFS) characterized by deepening-/fining-upward parasequences implying a retrogradational stacking pattern. The HST is marked by shallowing-/coarsening-upward parasequences implying a progradational stacking pattern.  相似文献   
13.
Anthropogenic activities and natural processes are continuously altering the mountainous environment through deforestation, forest degradation and other land-use changes. It is highly important to assess, monitor and forecast forest cover and other land-use changes for the protection and conservation of mountainous environment. The present study deals with the assessment of forest cover and other land-use changes in the mountain ranges of Dir Kohistan in northern Pakistan, using high resolution multi-temporal SPOT-5 satellite images. The SPOT-5 satellite images of years 2004, 2007, 2010 and 2013 were acquired and classified into land-cover units. In addition, forest cover and land-use change detection map was developed using the classified maps of 2004 and 2013. The classified maps were verified through random field samples and Google Earth imagery (Quick birds and SPOT-5). The results showed that during the period 2004 to 2013 the area of forest land decreased by 6.4%, however, area of range land and agriculture land have increased by 22.1% and 2.9%, respectively. Similarly, barren land increased by 1.1%, whereas, area of snow cover/glacier is significantly decreased by 21.3%. The findings from the study will be useful for forestry and landscape planning and can be utilized by the local, provincial and national forest departments; and REDD+ policy makers in Pakistan.  相似文献   
14.
15.
16.
17.
Late Proterozoic rocks of Tanol Formation in the Lesser Himalayas of Neelum Valley area are largely green schist to amphibolite facies rocks intruded by early Cambrian Jura granite gneiss and Jura granite representing Pan-African orogeny event in the area. These rocks are further intruded by pegmatites of acidic composition, aplites, and dolerite dykes. Based on field observations, texture, and petrographic character, three different categories of granite gneiss (i.e., highly porphyritic, coarse-grained two micas granite gneiss, medium-grained two micas granite gneiss, and leucocratic tourmaline-bearing muscovite granite gneiss), and granites (i.e., highly porphyritic coarse-grained two micas granite, medium-grained two micas granite, and leucocratic tourmaline-bearing coarse-grained muscovite granite) were classified. Thin section studies show that granite gneiss and granite are formed due to fractional crystallization, as revealed by zoning in plagioclase. The Al saturation index indicates that granite gneiss and granite are strongly peraluminous and S-type. Geochemical analysis shows that all granite gneisses are magnesian except one which is ferroan whereas all granites are ferroan except one which is magnesian. The CaO/Na2O ratio (>0.3) indicates that granitic melt of Jura granite gneiss and granite is pelite-psammite derived peraluminous granitic melt formed due to partial melting of Tanol Formation. The rare earth element (REE) patterns of the Jura granite and Jura granite gneiss indicate that granitic magma of Jura granite and Jura granite gneiss is formed due to partial melting of rocks that are similar in composition to that of upper continental crust.  相似文献   
18.
A structural interpretation of the Ziarat block in the Balochistan region (a part of the Suleiman Fold and Thrust Belt) has been carried out using seismic and seismological data. Seismic data consists of nine 2.5D pre‐stack migrated seismic lines, whereas the seismological data covers the Fault Plane Solution and source parameters. Structural interpretation describes two broad fault sets of fore and back thrusts in the study area that have resulted in the development of pop‐up structures, accountable for the structural traps and seismicity pattern in terms of seismic hazard. Seismic interpretation includes time and depth contour maps of the Dungan Formation and Ranikot group, while seismological interpretation includes Fault Plane Solution, that is correlated with a geological and structural map of the area for the interpretation of the nature of the subsurface faults. Principal stresses are also estimated for the Ranikot group and Dungan Formation. In order to calculate anisotropic elastic properties, the parameters of the rock strength of the formations are first determined from seismic data, along with the dominant stresses (vertical, minimum horizontal, and maximum horizontal). The differential ratio of the maximum and minimum horizontal stresses is obtained to indicate optimal zones for hydraulic fracturing, and to assess the potential for geothermal energy reservoir prospect generation. The stress maps indicate high values towards the deeper part of the horizon, and low towards the shallower part, attributed to the lithological and structural variation in the area. Outcomes of structural interpretation indicate a good correlation of structure and tectonics from both seismological and seismic methods.  相似文献   
19.
International Journal of Earth Sciences - Regional seismic reflection profiles, deep exploratory wells, and outcrop data have been used to study the structure and stratigraphic architecture of the...  相似文献   
20.
Waste engine oil causes a vital environmental pollution when it spill during change and transportation and products of waste engine oil causes lethal effects to the living systems. Thus, abiotic and biotic approaches are being extensively used for removal of waste engine oil pollution. Therefore in present study, waste engine oil degradation was accomplished by a new bacterial culture, isolated from the soil by an enrichment technique. Morphological, biochemical and gene sequence analysis revealed that isolate was Bacillus cereus. Subsequently, biodegradation potential of B. cereus for waste engine oil was studied. Experimental variables, such as pH, substrate concentration, inoculum size, temperature and time on the biodegradation, were checked in mineral salt medium. The biodegradation efficiency of B. cereus was determined by gravimetry, UV–visible spectrophotometry and gas chromatography. In addition, waste engine oil was also characterized by GC–MS and FTIR for its major constituents, which showed total 38 components in waste engine oil, including hopanes, benzopyrene, long-chain aliphatic hydrocarbons, dibenzothiophenes, biphenyl and their derivatives. Results of successive biodegradation indicated that B. cereus was capable to degrade 1% of waste engine oil with 98.6% degradation potential at pH 7 within 20 days. Hence, B. cereus presents an innovative tool for removing the engine oil from the contaminated area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号