首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   43篇
  国内免费   33篇
测绘学   8篇
大气科学   22篇
地球物理   112篇
地质学   262篇
海洋学   18篇
天文学   18篇
综合类   31篇
自然地理   22篇
  2023年   8篇
  2022年   19篇
  2021年   47篇
  2020年   32篇
  2019年   26篇
  2018年   78篇
  2017年   40篇
  2016年   60篇
  2015年   36篇
  2014年   28篇
  2013年   38篇
  2012年   13篇
  2011年   19篇
  2010年   6篇
  2009年   12篇
  2008年   7篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1986年   1篇
排序方式: 共有493条查询结果,搜索用时 15 毫秒
181.
Subsidence and thermal history analysis are carried out in order to investigate the Cenozoic basin development of the southwestern (Tenggol Arch and basinal side) part of the Malay basin. Structurally, the southwestern part consists of normal faults and horst and graben geometry. Tectonic subsidence curves show that the basinal side is more active than the Tenggol Arch due to movement along normal faults. Cenozoic development initiated with the deposition of sedimentary Units M & L (Oligocene) and the activation of the Tenggol fault on the basinal side. Several periods of accelerated and slow subsidence are observed during the Oligocene to Middle Miocene that could be associated with changes in regional stresses caused by pulsating plate movement. The Malay Basin experienced inversion throughout the Middle to Late Miocene related to mantle induced slab avalanche effect, causing relatively higher tectonic subsidence rates on the Tenggol Arch compared to the basinal side, suggesting that the Tenggol Arch is less affected by inversion than the basinal side. After a period (Late Miocene) of non-deposition, the basin was reactivated (Pliocene to recent) due to thermal relaxation with thick sedimentation. Paleo heat flows estimated utilizing a novel technique introduced in this study and present day heat flow calibrated using BHT data further supports our results, in that increase in heat flow is related to rapid tectonic subsidence. An anomalously high heat pulse affected the basin during inversion and could be the cause of meta-sediment formation whereas present heat flows, although high compared to average basins, shows decreasing trend from the inversion period.  相似文献   
182.
This review focuses on the various types of supports used for immobilization of titanium dioxide nanomaterial catalyst for degradation of organic pollutants in wastewater. Several supports suitable to particular immobilization technique used for the degradation of pollutants in wastewater streams are explained. In general, a coating of catalyst on supports is carried out either by physical (e.g., thermal treatment) or by chemical (e.g., sol–gel). Among a range of the supports used, some of the prominent ones include glass, silica, activated carbon, stainless steel, cellulose, clay. Also, characterization methods in use such as X-ray diffraction, transmission electron microscope, scanning electron microscope, and UV-spectroscopy are discussed. The operating parameters such as temperature for the selected immobilization techniques are also explained.  相似文献   
183.
184.
A study of combined effects of valley-weathering and valley-shaperatio on the ground motion characteristics and associated differential ground motion (DGM) is documented in this paper. In order to properly quantify the weathering effects, a forth-order-accurate staggered-grid viscoelastic time-domain finite-difference program has been used for the simulation of SH-wave responses. Simulated results revealed that the defocusing caused by valley is frequency-independent in contrast to the ridge-focusing. A decrease of average spectral amplification (ASA) with an increase of shape-ratio of the non-weathered triangular and elliptical valleys was obtained. Overall, the amplification and de-amplification pattern was larger in case of triangular valleys as compared to the elliptical valleys. It can be concluded that the dwelling within or near the topcorners of weathered valleys may suffer more damage as compared to their surroundings. A weathered triangular valley with large shape-ratio may cause unexpected damage very near its top-corners since both the ASA and DGM are largest.  相似文献   
185.
The evolutionary characteristics of a dust storm over Oman on 2 February 2008 were studied by analyzing the weather associated with it. The National Center for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) reanalysis wind flow pattern at 1,000?hPa showed a clockwise and outward wind flow pattern over the study region, a manifestation of a high-pressure cold air mass. In addition, ground truth observations for surface temperature and surface winds showed cold northerly winds until the early morning of 2 February 2008. A strong wind shear resulted from differences in wind speed between warm air and trapped cold air. This vertical wind shear enhanced instability. Furthermore, the weakening of the inversion in the lower troposphere and the formation of a mixed layer due to transfer of horizontal momentum from upper air towards the surface led to strong surface winds. These strong winds lifted a large amount of dust particles off the ground, resulting in the dust event of 2 February 2008.  相似文献   
186.
The impact of global climate change on runoff components, especially on the type of overland flow, is of utmost significance. High‐resolution temporal rainfall plays an important role in determining the hydrological response of quick runoff components. However, hydrological climate change scenario analyses with high temporal resolution are rare. This study investigates the impact of climate change on discharge peak events generated by rainfall, snowmelt, and soil‐frost induced runoff using high‐resolution hydrological modelling. The study area is Schäfertal catchment (1.44 km2) in the lower Harz Mountains in central Germany. The WaSiM‐ETH hydrological model is used to investigate the rainfall response of runoff components under near future (2021–2050) and far‐distant future (2071–2100) climatic conditions. Disaggregated daily climate variables of WETTREG2010 SRES scenario A1B are used on a temporal resolution of 10 min. Hydrological model parameter optimization and uncertainty analysis was conducted using the Differential Evolution Adaptive Metropolis (DREAM_(ZS)) uncertainty tool. The scenario results show that total runoff and interflow will increase by 3.8% and 3.5% in the near future and decrease by 32.85% and 31% in the far‐distant future compared to the baseline scenario. In contrast, overland flow and the number and size of peak runoff will decrease moderately for the near future and drastically for the far‐distant future compared to the baseline scenario. We found the strongest decrease for soil‐frost induced discharge peaks at 79.6% in the near future and at 98.2% in the far‐distant future scenario. It can be concluded that high‐resolution hydrological modelling can provide detailed predictions of future hydrological regimes and discharge peak events of the catchment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
187.
天山天池北堆积坝体结构受其成因和演化控制,影响其含水和渗流特性。对该坝体稳定至关重要的下伏基岩埋深、坝体结构阻渗水结构特征等需现场探测并给出科学判断。在地质调查基础上采用高密度电法对天池堆积坝体结构进行探测,首次获得深达下伏基岩的堆积坝体纵向和横向电性剖面。结合光释光测年、水化学成分对比、水量平衡计算等手段,分析坝体堆积物形成时代以及坝体水文地质结构特征。结果显示:天池坝堆积体厚度大于100 m并可分为3层,上部浅表层滑坡形成的巨大块石层厚30~40 m且基本不含水,其下松散含水层厚度为30~50 m;下部为较低电阻率弱透水的冰碛物,主要分布在坝体下游和东端;底部为高电阻率不透水的石炭系火山岩。坝体中间部位地下水集中下渗补给了西小天池。同时靠坝体东侧发育排泄通道,呈现多处溢水点,控制了飞龙涧左岸下降泉季节性发育,同河谷冲刷作用一起影响并导致下游左岸冰碛物中发育4处滑坡体。电法剖面揭示出与坝体轴向近平行的2条隐伏断层,其中堆积坝高堤处气象台所在山丘上游一侧发育一条近东西走向并倾向上游的断层F1,构成地下水阻隔带而使天池堆积坝上游潜水水位呈现一定雍高,同坝体下伏基岩和弱透水冰碛物联合组成的...  相似文献   
188.
Doklady Earth Sciences - The research work involves rock physics modeling and reservoir characterization of Suliman fold belt to sulamain fold depression. This area is a brighter zone for...  相似文献   
189.
A large number of valleys and basin systems are present in the northwestern part of the Himalayas in Pakistan which form significant aquifers in the region. Hydrogeophysical investigations in the western part of Nowshera District, a part of the intermontane Peshawar basin, were undertaken to help to determine the availability of groundwater resources in the region. Thirty vertical electrical resistivity soundings (VES) were acquired using a Schlumberger expanding array configuration with a maximum current electrode spacing (AB/2) of 150 m in delineating the groundwater potential in the study area. The results of the interpreted VES data using a combination of curve matching technique and computer iterative modeling methods suggest that the area is underlain by 3 to 5 geo-electric layers. The interpretation results showed that the geo-electrical succession consists of alluvium comprising of alternating layers of clay, silty clay, fine to coarse sands, sand with gravels and gravels of variable thickness. High subsurface resistivity values are correlated with gravel–sand units and low resistivity values with the presence of clays and silts. The modeled VES results were correlated with the pumping tests results and lithological logs of the existing wells. The pumping test suggests the transmissivity of the aquifer sediments is variable corresponding to different sediments within the area. The gravel–sand intervals having high resistivity value show high transmissivity values, whereas clay–silt sediments show low transmissivities. It is concluded that majority of the high resistive gravel–sand sediments belong to an alluvial fan environment. These gravel–sand zones are promising zones for groundwater abstraction which are concentrated in the central part of the study area.  相似文献   
190.
Marine sedimentary section across the Paleocene/Eocene (P/E) boundary interval is preserved in the Dungan Formation (Lower Indus Basin), Pakistan. Four dinoflagellate zones in the P/E interval of the Rakhi Nala section (Lower Indus Basin) are identified and correlated. The quantitative analysis of the dinoflagellate cyst assemblages together with geochemical data are used to reconstruct the palaeoenvironment across the P/E interval. The dinocyst assemblages allow the local correlation of the Dungan Formation (part) of the Sulaiman Range with the Patala Formation (part) of the Upper Indus Basin and global correlation of the Zone Pak-DV with the Apectodinium acme Zone of the Northern and Southern hemispheres. The onset of the carbon isotopic excursion (CIE) associated with Paleocene Eocene Thermal Maximum (PETM) is used globally to identify the P/E boundary. The CIE for the total organic carbon (fine fraction) δ13CFF is of a magnitude of ?1.7‰ is recorded for the first time in the Indus Basin. The Apectodinium acme precedes and straddles the onset of the CIE in the Indus Basin. This Apectodinium acme is also accompanied by a planktonic and benthonic foraminifera “barren zone.” The CIE in the Indus Basin, coupled with the changes in the dinocyst distribution and the benthonic and planktonic foraminifera assemblages, provides evidence of the changes associated with the PETM in this little-known part of the world. The benthonic foraminiferal assemblage indicates bathyal environment of deposition at the time of P/E boundary interval; the presence of dominantly open marine dinoflagellates and high planktonic foraminiferal ratio suggest that the water column at this site was well connected with the rest of the Tethys.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号