首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   9篇
  国内免费   1篇
测绘学   5篇
大气科学   9篇
地球物理   35篇
地质学   57篇
海洋学   22篇
天文学   4篇
自然地理   16篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   6篇
  2015年   6篇
  2014年   6篇
  2013年   11篇
  2012年   5篇
  2011年   6篇
  2010年   9篇
  2009年   14篇
  2008年   6篇
  2007年   10篇
  2006年   7篇
  2005年   3篇
  2004年   5篇
  2003年   7篇
  2002年   5篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1984年   4篇
  1982年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有148条查询结果,搜索用时 0 毫秒
141.
Late Holocene palaeoceanography in Van Mijenfjorden, Svalbard   总被引:2,自引:0,他引:2  
Based on detailed stratigraphical analysis of sediment cores spanning the last ca. 4000 calendar years, we reconstruct the palaeoceanograhic changes in the fiord Van Mijenfjorden, western Svalbard. Benthic foraminiferal δ18O indicate a gradual reduction in bottom water salinities between 2200 BC and 500 BC. This reduction was probably mainly a function of reduced inflow of oceanic water to the fiord, due to isostatic shallowing of the outer fiord sill. Stable salinity conditions prevailed between 500 BC and. 1300 AD. After the onset of a major glacial surge of the tidewater Paulabreen (Paula Glacier) system (PGS) around 1300 AD, there was a foraminiferal faunal change towards glacier proximal conditions, associated with a slight bottom water salinity depletion. During a series of glacial surges occuring from 1300 AD up the present salinity in the fiord has further decreased, corresponding to a δ18O depletion of 0.5 %o. This salinity decrease corresponds to the period when the PGS lost an equivalent of 30 – 40 % of its present ice volume, mainly through calving in the fiord.  相似文献   
142.
The Norwegian Ecological Model (NORWECOM) biophysical model system implemented with the ROMS ocean circulation model has been run to simulate conditions over the last 25 years for the North Atlantic. Modeled time series of water volume fluxes, primary production, and drift of cod larvae through their modeled ambient temperature fields have been analyzed in conjunction with VPA estimated time series of 3-year-old cod recruits in the Barents Sea. Individual time series account for less than 50% of the recruitment variability; however, a combination of simulated flow of Atlantic water into the Barents Sea and local primary production accounts for 70% of the variability with a 3-year lead. The associated regression predicts increased recruitment between 2007 and 2008 from about 450–700 million individuals with a standard error of nearly 150 million.  相似文献   
143.
Kinematics of extreme waves in deep water   总被引:2,自引:0,他引:2  
The velocity profiles under crest of a total of 62 different steep wave events in deep water are measured in laboratory using particle image velocimetry. The waves take place in the leading unsteady part of a wave train, focusing wave fields and random wave series. Complementary fully nonlinear theoretical/numerical wave computations are performed. The experimental velocities have been put on a nondimensional form in the following way: from the wave record (at a fixed point) the (local) trough-to-trough period, TTT and the maximal elevation above mean water level, ηm of an individual steep wave event are identified. The local wavenumber, k and an estimate of the wave slope, ε are evaluated from ω2/(gk)=1+ε2, where ω=2π/TTT and g denotes the acceleration of gravity. A reference fluid velocity, is then defined. Deep water waves with a fluid velocity up to 75% of the estimated wave speed are measured. The corresponding kηm is 0.62. A strong collapse of the nondimensional experimental velocity profiles is found. This is also true with the fully nonlinear computations of transient waves. There is excellent agreement between the present measurements and previously published Laser Doppler Anemometry data. A surprising result, obtained by comparison, is that the nondimensional experimental velocities fit with the exponential profile, i.e. eky, y the vertical coordinate, with y=0 in the mean water level.  相似文献   
144.
Several investigations have shown that a huge Late Weichselian ice stream flowed along the Norwegian Channel, and deposited thick debris flow deposits at the North Sea Fan. The development of the channel is probably mainly a result of several cycles of ice stream activity during the Quaternary. A merged 3D seismic image shows a lineated relief pattern interpreted as a uniquely well-preserved footprint of a moving ice sheet. This deep Quaternary horizon corresponds to a slightly irregular reflector on top of a parallel-layered seismic sequence. Seismic tie to the Troll core 8903 south of the study area shows that the sequence comprises Early Middle Pleistocene marine sediments. The pattern of lineations, the seismic stratigraphy, as well as the chronostratigraphic investigations of the Troll core, strongly indicate that the image reflects the initial phase of an extensive Middle Pleistocene glaciation (inferred age ca 0.5 Ma), prior to the development of a massive Norwegian Channel Ice Stream. The northwesterly oriented pattern, seen in the southeastern part of the study area, demonstrates that the ice flowed into the channel mainly from the coastal zone north of Bergen. Farther west various sets of ‘fan-shaped lineations’ partly cross each other, showing that the 3D-image represents a certain short time window. In the northern study area the ice flow was dominantly northwards, and directed towards the area below the present shallow Måløy Plateau. There are no indications that the glaciers north of Sognefjorden affected the marine ice sheet.  相似文献   
145.
A comparison of stable platform and strapdown airborne gravity   总被引:3,自引:1,他引:2  
To date, operational airborne gravity results have been obtained using either a damped two-axis stable platform gravimeter system such as the LaCoste and Romberg (LCR) S-model marine gravimeter or a strapdown inertial navigation system (INS), showing comparable accuracies. In June 1998 three flight tests were undertaken which tested an LCR gravimeter and a strapdown INS gravity system side by side. To the authors' knowledge, this was the first time such a comparison flight was undertaken. The flights occurred in Disko Bay, off the west coast of Greenland. Several of the flight lines were partly flown along existing shipborne gravity profiles to allow for an independent source of comparison of the results. The results and analysis of these flight tests are presented. The measurement method and error models for both the stable platform and strapdown INS gravity systems are presented and contrasted. An intercomparison of gravity estimates from both systems is given, along with a comparison of the individual estimates with existing shipborne gravity profiles. The results of the flight tests show that the gravity estimates from the two systems agree at the 2–3 mGal level, after the removal of a linear bias. This is near the combined noise level of the two systems. It appears that a combination of both systems would provide an ideal airborne gravity survey system, combining the excellent bias stability of the LCR gravimeter with the higher dynamic range and increased spatial resolution of the strapdown INS. Received: 3 June 1999 / Accepted: 30 November 1999  相似文献   
146.
147.
148.
J. Ebbing  O. Olesen 《Tectonophysics》2005,411(1-4):73-87
We investigate the Scandes mountain range by analysing the gravity field, the geoid heights and the degree of isostatic compensation of the lithosphere. Topographically, the Scandes mountain range can be divided in the Northern and Southern Scandes. Comparisons between the present topographic expression and the gravity field and the geoid show that the axis of highest elevation in the Northern Scandes is shifted eastwards compared to the minimum of the Bouguer anomaly, while the two coincide perfectly in the Southern Scandes. Geoid heights reduced by the effect of topographic masses show a large-scale minimum in the Northern Scandes, but no anomaly in the Southern Scandes.Regional, flexural isostatic calculations yield a flexural rigidity of D = 1023 Nm for the lithosphere of the Southern Scandes and the isostatic gravity and geoid residuals point to additional isostatic support by low-density rocks below the Moho. On the other side, for the lithosphere in the Northern Scandes no significant flexural rigidity can be resolved. Here, the Bouguer anomaly is best modelled with a small flexural rigidity, indicating nearly Airy isostatic behaviour. Local subsurface loading and horizontal tectonic forces overprint the isostatic compensations and increase the tectonic complexity of the Northern Scandes. These distinctive features of the Scandes cannot be explained by currently existing models of the present and Neogene uplift and the isostatic mechanism of the Scandes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号