首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   12篇
  国内免费   7篇
测绘学   17篇
大气科学   16篇
地球物理   52篇
地质学   83篇
海洋学   17篇
天文学   3篇
综合类   1篇
自然地理   10篇
  2024年   1篇
  2022年   6篇
  2021年   4篇
  2020年   6篇
  2019年   9篇
  2018年   13篇
  2017年   18篇
  2016年   17篇
  2015年   12篇
  2014年   20篇
  2013年   25篇
  2012年   13篇
  2011年   10篇
  2010年   11篇
  2009年   9篇
  2008年   8篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1992年   1篇
  1982年   1篇
排序方式: 共有199条查询结果,搜索用时 15 毫秒
21.
22.
Over the past few decades, groundwater has become an essential commodity owing to increased demand as a result of growing population, industrialization, urbanization and so on. The water supply situation is expected to become more severe in the future because of continued unsustainable water use and projected change in hydrometeorological parameters due to climate change. This study is based on the integrated approach of remote sensing, geographical information system and multicriteria decision‐making techniques to determine the most important contributing factors that affect the groundwater resources and to delineate the groundwater potential zones. Ten thematic layers, namely, geomorphology, geology, soil, topographic elevation (digital elevation model), land use/land cover, drainage density, lineament density, proximity of surface water bodies, surface temperature and post‐monsoon groundwater depth, were considered for the present study. These thematic layers were selected for groundwater prospecting based on the literature; discussion with the experts of the Central Ground Water Board, Government of India; field observations; geophysical investigation; and multivariate techniques. The thematic layers and their features were assigned suitable weights on Saaty's scale according to their relative significance for groundwater occurrence. The assigned weights of the layers and their features were normalized by using the analytic hierarchy process and eigenvector method. Finally, the selected thematic maps were integrated using a weighted linear combination method to create the final groundwater potential zone map. The final output map shows different zones of groundwater potential, namely, very good (16%), good (35%), moderate (28%) low (17%) and very low (2.1%). The groundwater potential zone map was finally validated using the discharge and groundwater depth data from 28 and 98 pumping wells, respectively, which showed good correlation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
23.
The cellular automata (CA) model is an important tool in land use change studies. Swift increases in population and long-term expectations of rapid urbanization have led to extensive land use change, and normal living conditions have affected the natural resources of the land. This paper highlights and analyzes the historical urban changes in Kirkuk City, Iraq, considering repeated changes undergone by the state such change as government infrastructures, wars, and economic blockade. In this paper, an integrated model, built-in multi regression model, and multi-criteria evaluation were considered to improve the representation of CA transition rules. Environmental and socioeconomic factors were used to produce Suitable Maps (SMs). These SMs were practicalities to create factor layers and weight usage, rating method process for variance expert decision-making groups, and geographic information systems for the periods 1984, 1990, 2000, and 2010. The roots of the equation (R2) values are compared and these values are chosen to produce a good model of suitable maps. The approach used in this study provides a mechanism for monitoring suitability maps in Kirkuk. Furthermore, the model Markov CA is implemented and evaluated. The results indicate that the model, its related concepts performs sufficiency  相似文献   
24.
Snow and glacier melt are significant contributors to streamflow in Himalayan catchments, and their increasing contributions serve as key indicators of climate change. Consequently, the quantification of these streamflow components holds significant importance for effective water resource management. In this study, we utilized the spatio-temporal variability of isotopic signatures in stream water, rainfall, winter fresh snow, snowpack, glaciers, springs, and wells, in conjunction with hydrometeorological observations and Snow Cover Area (SCA) data, to identify water sources and develop a conceptual understanding of streamflow dynamics in three catchments (Lidder, Sindh, and Vishow) within the western Himalayas. The following results were obtained: (a) endmember contributions to the streamflow exhibit significant spatial and seasonal variability across the three catchments during 2018–2020; (b) snowmelt dominates streamflow, with average contributions across the entire catchment varying: 59% ± 9%, 55% ± 4%, 56% ± 6%, and 55% ± 9% in Lidder, 43% ± 6%, 38% ± 6%, 32% ± 4%, and 33% ± 5% in Sindh and 45% ± 8%, 40% ± 6%, 39% ± 6%, and 32% ± 5% in Vishow during spring, summer, autumn, and winter seasons, respectively; (c) glacier melt contributions can reach ~30% to streamflow near the source regions during peak summer; (d) The primary uncertainties in streamflow components are attributed to the spatiotemporal variability of tracer signatures of winter fresh snow/snowpack (±1.9% to ±20%); (e)regarding future streamflow components, if the glacier contribution were to disappear completely, the annual average streamflow in Lidder and Sindh could decrease up to ~20%. The depletion of the cryosphere in the region has led to a rapid increase in runoff (1980–1900), but it has also resulted in a significant streamflow reduction due to glacier mass loss and changes in peak streamflow over the past three decades (1990–2020). The findings highlight the significance of environmental isotope analysis, which provides insights into water resources and offers a critical indication of the streamflow response to glacier loss under a changing climate.  相似文献   
25.
This paper will discuss the computerised development control and approval system being developed for the Planning and Development Control Department, City Hall of Kuala Lumpur, with stress on the GIS architecture developed within the system. The prospects and challenges towards implementation of the system are also discussed.  相似文献   
26.
Selecting suitable distributions for rainfall data is usually subjective and complex since it requires decision-makers to consider results from various measures of goodness-of-fit indices. In this study, the VIKOR method in multi-criteria decision-making analysis is modified to select the most suitable plotting positions to represent extreme storm intensities in order to build the intensity–duration–frequency (IDF) curves of storm events. This is done by considering the rankings provided by all goodness-of-fit indices used to obtain a compromise solution. Nine plotting positions are considered: Weibull (W), Adamowski (A), Gringorten (G), Hazen (H) and Gumbel (EV I) and two known plotting positions for generalized extreme value (GEV) distribution using Pearson’s skewness and another two using L-skewness. The IDF curves obtained are compared to a reference IDF curves which was found using the GEV distribution. The mean and median for three goodness-of-fit indices, the coefficient of variation of root mean square error, CVRMSE, the mean percentage of difference, Δ, and the coefficient of determination, R 2, are taken as the criteria for selection process. The results show that six plotting positions, A, H, W, G and the two plotting positions with L-skewness, are equally superior compared to the other three plotting positions.  相似文献   
27.
Understanding the stratigraphic fill and reconstructing the palaeo‐hydrology of incised valleys can help to constrain those factors that controlled their origin, evolution and regional significance. This condition is addressed through the analysis of a large (up to 18 km wide by 80 m deep) and exceptionally well‐imaged Late Pleistocene incised valley from the Sunda Shelf (South China Sea) based on shallow three‐dimensional seismic data from a large (11 500 km2), ‘merge’ survey, supplemented with site survey data (boreholes and seismic). This approach has enabled the characterization of the planform geometry, cross‐sectional area and internal stratigraphic architecture, which together allow reconstruction of the palaeo‐hydrology. The valley‐fill displays five notable stratigraphic features: (i) it is considerably larger than other seismically resolvable channel forms and can be traced for at least 180 km along its length; (ii) it is located in the axial part of the Malay Basin; (iii) the youngest part of the valley‐fill is dominated by a large (600 m wide and 23 m deep), high‐sinuosity channel, with well‐developed lateral accretion surfaces; (iv) the immediately adjacent interfluves contain much smaller, dendritic channel systems, which resemble tributaries that drained into the larger incised valley system; and (v) a ca 16 m thick, shell‐bearing, Holocene clay caps the valley‐fill. The dimension, basin location and palaeo‐hydrology of this incised valley leads to the conclusion that it represents the trunk river, which flowed along the length of the Malay Basin; it connected the Gulf of Thailand in the north with the South China Sea in the south‐east. The length of the river system (>1200 km long) enables examination of the upstream to downstream controls on the evolution of the incised valley, including sea‐level, climate and tectonics. The valley size, orientation and palaeo‐hydrology suggest close interaction between the regional tectonic framework, low‐angle shelf physiography and a humid‐tropical climatic setting.  相似文献   
28.
The South-East Asian region experienced a haze episode in 1994 which was widely believed to be due to widespread forest fires in Sumatra and Kalimantan (Indonesia). Broadband measurements of the surface level solar ultraviolet-B, UV-A and Global radiation at Penang (Malaysia) are used to study the effect of the 1994 haze on effective UV-B irradiance. We find that during the haze episode, there is enhanced absorption of surface level UV-B radiation. The effect of haze on UV-A and Global radiation is much less. The reduction in absolute noon time UV-B irradiance (mostly cloud free) during the 1994 haze period was 23% relative to the UV-B irradiance during thecorresponding haze-free period in 1995. Even though the noon time radiation data minimizes the cloud effect in the results presented some cloud effect is still present.  相似文献   
29.
Pounding between adjacent bridge structures with insufficient separation distance has been identified as one of the primary causes of damage in many major earthquakes. It takes place because the closing relative movement is larger than the structural gap provided between the structures. This relative structural response is controlled not only by the dynamic properties of the participating structures but also by the characteristics of the ground excitations. The consequence of the spatial variation of ground motions has been studied by researchers; however, most of these studies were performed numerically. The objective of the present research is to experimentally evaluate the influence of spatial variation of ground motions on the pounding behaviour of three adjacent bridge segments. The investigation is performed using three shake tables. The input spatially varying ground excitations are simulated based on the New Zealand design spectra for soft soil, shallow soil and strong rock using an empirical coherency loss function. Results confirm that the spatially nonniform ground motions increase the relative displacement of adjacent bridge girders and pounding forces. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
30.
We are very aware of the importance of the ozone layer, without which life on the Earth would not have evolved in the way it has. Solar storms carry energetic protons into the Earth's upper atmosphere,where they boost production of nitrogen oxides which are known as ozone killers and which ultimately increase ultraviolet(UV) radiations. In the present study, we estimate the effects of solar energetic protons during super storms(Dst index -300 nT) over the total ozone column for the last 32 yr. We select a total of seven super storm events that occurred during solar cycles 22–24(for the last 32 yr) having Dst index -300 nT. To that end, we apply superposed epoch analysis(SEA) to verify the impact of storm events on the quantitative variation of total ozone column and on UV radiations during super storm events.After completing the empirical analysis, we conclude that the ozone column gets depleted significantly(22±6.8%) as proton density increases during super storm events and this decrement in the ozone level is further responsible for a substantial increase(26±11.2%) in peak UV radiation intensities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号