The Pingluo area, as an experimental study area in Yinchuan, has been subjected to major environmental degradation due to soil salinization problems. Soil salinization is one of the main problems of land degradation in arid and semiarid regions. In the present study, remote sensing was integrated with mathematical modeling to evaluate soil salinization adequately. To detect soil salinization, soil water content and electrical conductivity of soil samples were analyzed. The reflectance of soil samples was measured using a spectrometer (SR-3500) with 1024 bands. Indices of soil salinity, vegetation and drought were analyzed using Landsat images over the study area. Based on Landsat images, physicochemical analysis, reflectance of sensitive bands for soil salinization and environmental indices, canopy response salinity index (CRSI), perpendicular drought index (PDI) and enhanced normalized difference vegetation index (ENDVI), a new model was established for simulation and prediction of soil salinization in the study area. Correlation analyses and multiple regression methods were used to construct an accurate model. The results showed that green, blue and near-infrared light was significantly correlated with soil salinity and that the spectral parameters improved this correlation significantly. Therefore, the model was more effective when combining spectral parameters with sensitive bands with modeling. After mathematical transformation of soil reflectance, the correlations of bands sensitive to soil salinization were 0.739 and 0.7 for electrical conductivity and water content, respectively. After transformation of vegetation reflectance, the correlation coefficient of soil salinity became 0.577. After inversion of the model based on soil hyperspectral and water content, the significance became 0.871 and 0.726, respectively, which can be used to predict soil salinity and water content. The spectral soil salinity model had a coefficient of 0.739 for soil salinity prediction. Among the salinity indices, the CRSI was selected as the most significant, with R2 of 0.571, whereas the R2 for PDI reached only 0.484. Among the vegetation indices, the ENDVI had the highest response to soil salinity, with R2 of 0.577. After scale conversion, the correlation percentages between CRSI and measured soil salinity and between ENDVI and measured soil salinity increased to 16.2% and 8.5%, respectively. Following the correlation between PDI and soil water content, the percentage of correlation increased to 11.6%. The integration of hyperspectral remote sensing, ground methods and an inversion method for salinity is a very important and effective technique for rapid and nondestructive monitoring of soil salinization.
Gulf of Aqaba is recognized as an active seismic zone where many destructive earthquakes have occurred. The estimation of source parameters and coda Q attenuation are the main target of this work. Fifty digital seismic events in eight short-period seismic stations with magnitude 2.5–5.2 are used. Most of these events occurred at hypocentral depths in the range of 7–20 km, indicating that the activity was restricted in the upper crust. Seismic moment, Mo, source radius, r, and stress drop, Δσ, are estimated from P- and S-wave spectra using the Brune’s seismic source model. The average seismic moment generated by the whole sequence of events was estimated to be 4.6E?+?22 dyne/cm. The earthquakes with higher stress drop occur at 10-km depth. The scaling relation between the seismic moment and the stress drop indicates a tendency of increasing seismic moment with stress drop. The seismic moment increases with increasing the source radius. Coda waves are sensitive to changes in the subsurface due to the wide scattering effects generating these waves. Single scattering model of local earthquakes is used to the coda Q calculation. The coda with lapse times 10, 20, and 30 s at six central frequencies 1.5, 3, 6, 12, 18, 24 Hz are calculated. The Qc values are frequency dependent in the range 1–25 Hz, and are approximated by a least squares fit to the power law [$ {Q_c}(f) = {Q_o}{(f/{f_o})^\eta } $]. The average of Qc values increases from 53?±?10 at 1.5 Hz to 700?±?120 at 24 Hz. The average of Qo values ranges from 13?±?1 at 1.5 Hz to 39?±?4 at 24 Hz. The frequency exponent parameter η ranges between 1.3?±?0.008 and 0.9?±?0.001. 相似文献
Slope failure usually occurs when soil particles are unable to build a strong bond with each other and become loose because of the presence of water. Water pressure weakens the ties between the particles and they tend to slip. Therefore, this study focused on the use of horizontal drains to reduce water entry and control the ground water level as a method of slope stabilization. Several previous studies have shown that the use of horizontal drains to lower the water level in soil is one of the fastest and cheapest slope stabilization methods. The main objective of this study is to analyze the effect of horizontal drains on slope stability. Information on slope condition during the landslides which happened at Precinct 9, Putrajaya, Malaysia was used for analytical simulation. Seep/W and Slope/W analyses were carried out with GeoStudio version 2007 software. Slopes with and without horizontal drains were then compared in terms of groundwater level and factor of safety (FOS) values. Scenarios were created for seven types of soil namely: residual, clay, silt, loam, sandy loam, sandy clay loam, and silt clay loam for a case wise analysis. The effect of daily steady rainfall and realcondition rainfall was studied. These cases were studied to find the effectiveness of horizontal drains as a slope stabilization tool. The results revealed that when a drain was installed on a slope, the groundwater level dropped immediately and the safety factor of the slope increased. Sandy loam (sL) soil was identified as the best candidate for a horizontal drain. Its highly saturated hydraulic conductivity Ks facilitated groundwater drain through the horizontal drain effectively. Silt clay loam (scL) soil was identified as the least effective candidate. 相似文献
Snow and glacier melt are significant contributors to streamflow in Himalayan catchments, and their increasing contributions serve as key indicators of climate change. Consequently, the quantification of these streamflow components holds significant importance for effective water resource management. In this study, we utilized the spatio-temporal variability of isotopic signatures in stream water, rainfall, winter fresh snow, snowpack, glaciers, springs, and wells, in conjunction with hydrometeorological observations and Snow Cover Area (SCA) data, to identify water sources and develop a conceptual understanding of streamflow dynamics in three catchments (Lidder, Sindh, and Vishow) within the western Himalayas. The following results were obtained: (a) endmember contributions to the streamflow exhibit significant spatial and seasonal variability across the three catchments during 2018–2020; (b) snowmelt dominates streamflow, with average contributions across the entire catchment varying: 59% ± 9%, 55% ± 4%, 56% ± 6%, and 55% ± 9% in Lidder, 43% ± 6%, 38% ± 6%, 32% ± 4%, and 33% ± 5% in Sindh and 45% ± 8%, 40% ± 6%, 39% ± 6%, and 32% ± 5% in Vishow during spring, summer, autumn, and winter seasons, respectively; (c) glacier melt contributions can reach ~30% to streamflow near the source regions during peak summer; (d) The primary uncertainties in streamflow components are attributed to the spatiotemporal variability of tracer signatures of winter fresh snow/snowpack (±1.9% to ±20%); (e)regarding future streamflow components, if the glacier contribution were to disappear completely, the annual average streamflow in Lidder and Sindh could decrease up to ~20%. The depletion of the cryosphere in the region has led to a rapid increase in runoff (1980–1900), but it has also resulted in a significant streamflow reduction due to glacier mass loss and changes in peak streamflow over the past three decades (1990–2020). The findings highlight the significance of environmental isotope analysis, which provides insights into water resources and offers a critical indication of the streamflow response to glacier loss under a changing climate. 相似文献
A survey was carried out at the largest rice cultivation area in Peninsular Malaysia,the Muda rice agroecosystem.The main objective of this study was to document the overall biodiversity associated with this unique agroecosystem by using a combination of sampling techniques in order to record different groups of fauna and flora.The total number of biota recorded and identified from the rice field ecosystem during the study period consisted of 46 species of zooplankton,81 species of aquatic insects,5 species of rodents,7 species of bats,87 species of birds,11 species of fishes and 58 species of weeds.A long-term study should be carried out as more species are expected to be recorded when more of the Muda rice agroecosystem area has been sampled to obtain sufficient information on the Muda rice agrobiodiversity. 相似文献
A field study was performed at rivers in Gunung Jerai forest reserve(Kedah,Malaysia) to assess seasonal changes in mayfly community structure and abundance in relation to altitude and water physicochemistry.Rivers at lower(Batu Hampar River) and higher(Teroi River) elevations were visited through dry and wet seasons in September 2007 to August 2008.Monthly visits were made to 20 sites on each river,and water and aquatic insects were sampled using D-pond aquatic nets.Water was warmer,more acid,and more turbid in Teroi River during wet season.Ammonia was the only nutrient exhibiting significant seasonal variations(greater during wet season).Chemical oxygen demand content was higher in Teroi River where biochemical oxygen demand content was low during wet season.Species richness was higher in Batu Hampar River,but displayed seasonal variations only in Teroi River.Among the eight families encountered,Baetidae was the commonest.Baetid abundance was usually high during wet season,and those belonging to the dominant genus(Baetis) were more abundant in Teroi River.Heptageniidae was the second commonest family;its predominant genus,Thalerospyrus was more abundant in Teroi River during dry season.Caenidae,Leptophlebiidae and Oligoneuriidae were only found in Batu Hampar River where their abundances peaked during dry season,i.e.,Habrophlebiodes sp.and Isonychia sp.Ephemerellidae and Teloganodidae occurred only in Teroi River,with the first found only during dry season.Mayflies were recorded under very distinct physicochemical conditions,illustrating their potential usefulness for assessing water quality.Caenids,leptophlebids,oligoneurids ephemerellids and teloganodids seem to be particularly sensitive to temperature,acidity,turbidity,chemical oxygen demand and biochemical oxygen demand,parameters that varied with river altitude. 相似文献
Natural Resources Research - An accurate forecasting model for the price volatility of minerals plays a vital role in future investments and decisions for mining projects and related companies. In... 相似文献
In the present work, the two body problem using a potential of a continued fractions procedure is reformulated. The equations of motion for two bodies moving under their mutual gravity is constructed. The integrals of motion, angular momentum integral, center of mass integral, total mechanical energy integral are obtained. New orbit equation is obtained. Some special cases are followed directly. Some graphical illustrations are shown. The only included constant of the continued fraction procedure is adjusted so as to represent the so called J2 perturbation term of the Earth’s potential. 相似文献
AbstractThe Hulu Langat basin, a strategic watershed in Malaysia, has in recent decades been exposed to extensive changes in land-use and consequently hydrological conditions. In this work, the impact of Land Use and Cover Change (LUCC) on hydrological conditions (water discharge and sediment load) of the basin were investigated using the Soil and Water Assessment Tool (SWAT). Four land-use scenarios were defined for land-use change impact analysis, i.e. past, present (baseline), future and water conservation planning. The land-use maps, dated 1984, 1990, 1997 and 2002, were defined as the past scenarios for LUCC impact analysis. The present scenario was defined based on the 2006 land-use map. The 2020 land-use map was simulated using a cellular automata-Markov model and defined as the future scenario. Water conservation scenarios were produced based on guidelines published by Malaysia’s Department of Town and Country Planning and Department of Environment. Model calibration and uncertainty analysis was performed using the Sequential Uncertainty Fitting (SUFI-2) algorithm. The model robustness for water discharge simulation for the period 1997–2008 was good. However, due to uncertainties, mainly resulting from intense urban development in the basin, its robustness for sediment load simulation was only acceptable for the calibration period 1997–2004. The optimized model was run using different land-use maps over the periods 1997–2008 and 1997–2004 for water discharge and sediment load estimation, respectively. In comparison to the baseline scenario, SWAT simulation using the past and conservative scenarios showed significant reduction in monthly direct runoff and monthly sediment load, while SWAT simulation based on the future scenario showed significant increase in monthly direct runoff, monthly sediment load and groundwater recharge.
Editor D. Koutsoyiannis; Associate editor C. Perrin 相似文献
Waterfront retaining walls supporting dry backfill are subjected to hydrostatic pressure on upstream face and earth pressure on the downstream face. Under seismic conditions, if such a wall retains a submerged backfill, additional hydrodynamic pressures are generated. This paper pertains to a study in which the effect of earthquakes along with the hydrodynamic pressure including inertial forces on such a retaining wall is observed. The hydrodynamic pressure is calculated using Westergaard's approach, while the earth pressure is calculated using Mononobe-Okabe's pseudo-static analysis. It is observed that when the horizontal seismic acceleration coefficient is increased from 0 to 0.2, there is a 57% decrease in the factor of safety of the retaining wall in sliding mode. For investigating the effect of different parameters, a parametric study is also done. It is observed that if φ is increased from 30° to 35°, there is an increase in the factor of safety in the sliding mode by 20.4%. Similar observations were made for other parameters as well. Comparison of results obtained from the present approach with [Ebeling, R.M., Morrison Jr, E.E., 1992. The seismic design of waterfront retaining structures. US Army Technical Report ITL-92-11. Washington DC] reveal that the factor of safety for static condition (kh=0), calculated by both the approaches, is 1.60 while for an earthquake with kh=0.2, they differ by 22.5% due to the consideration of wall inertia in the present study. 相似文献