首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1062篇
  免费   67篇
  国内免费   37篇
测绘学   61篇
大气科学   58篇
地球物理   342篇
地质学   550篇
海洋学   51篇
天文学   37篇
综合类   11篇
自然地理   56篇
  2024年   4篇
  2023年   3篇
  2022年   43篇
  2021年   56篇
  2020年   61篇
  2019年   42篇
  2018年   109篇
  2017年   90篇
  2016年   117篇
  2015年   65篇
  2014年   94篇
  2013年   124篇
  2012年   64篇
  2011年   66篇
  2010年   39篇
  2009年   34篇
  2008年   27篇
  2007年   15篇
  2006年   20篇
  2005年   4篇
  2004年   14篇
  2003年   6篇
  2002年   5篇
  2001年   9篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
  1971年   5篇
  1969年   2篇
  1965年   1篇
  1963年   1篇
排序方式: 共有1166条查询结果,搜索用时 31 毫秒
171.
We present a preliminary estimation of tsunami hazard associated with the Makran subduction zone (MSZ) at the northwestern Indian Ocean. Makran is one of the two main tsunamigenic zones in the Indian Ocean, which has produced some tsunamis in the past. Northwestern Indian Ocean remains one of the least studied regions in the world in terms of tsunami hazard assessment. Hence, a scenario-based method is employed to provide an estimation of tsunami hazard in this region for the first time. The numerical modeling of tsunami is verified using historical observations of the 1945 Makran tsunami. Then, a number of tsunamis each resulting from a 1945-type earthquake (M w 8.1) and spaced evenly along the MSZ are simulated. The results indicate that by moving a 1945-type earthquake along the MSZ, the southern coasts of Iran and Pakistan will experience the largest waves with heights of between 5 and 7 m, depending on the location of the source. The tsunami will reach a height of about 5 m and 2 m in northern coast of Oman and eastern coast of the United Arab Emirates, respectively.  相似文献   
172.
Alborz Mountains host Caspian Hyrcanian forest ecoregion along the northern slopes and forest steppe ecoregion in highlands. Hyrcanian forest covers the southeastern part of Caucasus biodiversity hotspot and is of great biogeographic importance. Altitudinal pattern and correlation between woody species biodiversity (DIV), forest structure ((stem density (DEN), mean basal area (MBA) and mean height class (MHC)) and disturbance (DIS) were explored along 2,400 m altitudinal gradient in Hyrcanian relict forest, Central Alborz Mountains. Vegetation changes from lowland forest (LoF) to mid- altitude forest (MiF) and montane forest (MoF) in this area. The altitudinal gradient was divided into twelve 200 m elevational belts. Point centered quarter method (PCQM) with 96 sampling points and 83 vegetation samples by plot method (PM) were used to record field data. Shannon-Wiener index and Pearson coefficient were used for diversity and correlation analysis. The results showed that DEN decreased linearly, MBA and MHC showed relatively hump shaped and DIS showed a reverse hump shaped pattern of change along altitudinal gradient. Woody species diversity decreased non-steadily from LoF to MoF. Transitional vegetations of Carpinus-Fagus and Fagus-Quercus represented higher diversity of woody taxa compared to adjacent homogenous communities. Significant correlation was observed between altitude and all parameters: DEN with MBA, DIS and DIV; MBA with DIS; MHC with DIS along with DIV; and DIS with DIV at the study area scale. Surprisingly,correlation between studied parameters differed within each vegetation type. Altitude probably acts as a proxy for human and environmental driving forces in this area. Stability of warm and wet condition, season length, soil depth along with forest accessibility probably influences the altitudinal pattern of the studied parameters. Disturbance affects forest structure and consequently diversity; especially in lowlands. The obtained results recommend using both forest biodiversity and mensuration data in management process of forest ecosystems.  相似文献   
173.
This study employed three chemometric data mining techniques (factor analysis (FA), cluster analysis (CA), and discriminant analysis (DA)) to identify the latent structure of a water quality (WQ) dataset pertaining to Kinta River (Malaysia) and to classify eight WQ monitoring stations along the river into groups of similar WQ characteristics. FA identified the WQ parameters responsible for variations in Kinta River's WQ and accentuated the roles of weathering and surface runoff in determining the river's WQ. CA grouped the monitoring locations into a cluster of low levels of water pollution (the two uppermost monitoring stations) and another of relatively high levels of river pollution (the mid-, and down-stream stations). DA confirmed these clusters and produced a discriminant function which can predict the cluster membership of new and/or unknown samples. These chemometric techniques highlight the potential for reasonably reducing the number of WQVs and monitoring stations for long-term monitoring purposes.  相似文献   
174.
The 1991 Gulf oil spill heavily impacted the coastal areas of the Saudi waters of the Arabian Gulf and recent studies have indicated that even 15 years after the incident, macrobenthos had not completely recovered in the sheltered bays in the affected region such as, Manifa Bay. This study investigates the community conditions of macrobenthos in the open waters in one of the impacted areas, Al-Khafji waters, about 14 years after the spill. Diversity measures and community structure analyses indicate a healthy status of polychaete communities. The BOPA index reveals that oil sensitive amphipods were recolonized in the study area. This confirms that the benthic communities of the oil spill impacted area had taken only <14 years to recover in the open waters of the impacted areas. The study also reveals the existence of three distinct polychaete communities along the depth and sediment gradients.  相似文献   
175.
Wave data assimilation using a hybrid approach in the Persian Gulf   总被引:1,自引:1,他引:0  
The main goal of this study is to develop an efficient approach for the assimilation of the hindcasted wave parameters in the Persian Gulf. Hence, the third generation SWAN model was employed for wave modeling forced by the 6-h ECMWF wind data with a resolution of 0.5°. In situ wave measurements at two stations were utilized to evaluate the assimilation approaches. It was found that since the model errors are not the same for wave height and period, adaptation of model parameter does not result in simultaneous and comprehensive improvement of them. Therefore, an approach based on the error prediction and updating of output variables was employed to modify wave height and period. In this approach, artificial neural networks (ANNs) were used to estimate the deviations between the simulated and measured wave parameters. The results showed that updating of output variables leads to significant improvement in a wide range of the predicted wave characteristics. It was revealed that the best input parameters for error prediction networks are mean wind speed, mean wind direction, wind duration, and the wave parameters. In addition, combination of the ANN estimated error with numerically modeled wave parameters leads to further improvement in the predicted wave parameters in contrast to direct estimation of the parameters by ANN.  相似文献   
176.
In gravity interpretation methods, an initial guess for the approximate shape of the gravity source is necessary. In this paper, the support vector classifier (SVC) is applied for this duty by using gravity data. It is shown that using SVC leads us to estimate the approximate shapes of gravity sources more objectively. The procedure of selecting correct features is called feature selection (FS).In this research, the proper features are selected using inter/intra class distance algorithm and also FS is optimized by increasing and decreasing the number of dimensions of features space. Then, by using the proper features, SVC is used to estimate approximate shapes of sources from the six possible shapes, including: sphere, horizontal cylinder, vertical cylinder, rectangular prism, syncline, and anticline. SVC is trained using 300 synthetic gravity profiles and tested by 60 other synthetic and some real gravity profiles (related to a well and two ore bodies), and shapes of their sources estimated properly.  相似文献   
177.
Hydraulic Conductivity of Fly Ash-Amended Mine Tailings   总被引:1,自引:1,他引:0  
The objective of this study was to evaluate the effect of fly ash addition on hydraulic conductivity (k) of mine tailings. Mine tailings used in this study were categorized as synthetic tailings and natural tailings; two synthetic tailings were developed via blending commercially-available soils and natural tailings were collected from a garnet mine located in the U.S. Two fly ashes were used that had sufficient calcium oxide (CaO) content (17 and 18.9 %) to generate pozzolanic activity. Hydraulic conductivity was measured on pure tailings and fly ash-amended tailings in flexible-wall permeameters. Fly ash was added to mine tailings to constitute 10 % dry mass of the mixture, and specimens were cured for 7 and 28 days. The influence of fly ash-amendment on k of mine tailings was attributed to (1) molding water content and (2) plasticity of the mine tailings. Tailings that classified as low-plasticity silts with clay contents less than 15 % exhibited a decrease in k when amended with fly ash and prepared wet of optimum water content (w opt ). Tailings that classified as low-plasticity clay exhibited a one-order magnitude increase in k with addition of fly ash for materials prepared dry or near w opt . The decrease in k for silty tailings was attributed to formation of cementitious bonds that obstructed flow paths, whereas the increase in k for clayey tailings was attributed to agglomeration of clay particles and an overall increase in average pore size. The results also indicated that the effect of curing time on k is more pronounced during the early stages of curing (≤7 days), as there was negligible difference between k for 7 and 28-days cured specimens.  相似文献   
178.
We computed P and S receiver functions to investigate the lithospheric structure beneath the northwest Iran and compute the Vp/Vs ratio within the crust of this seismologically active area. Our results enabled us to map the lateral variations of the Moho as well as those of the lithosphere–asthenosphere boundary (LAB) beneath this region. We selected data from teleseismic events (Mb?>?5.5, epicentral distance between 30° and 95° for P receiver functions and Mb?>?5.7, epicentral distance between 60° and 85° for S receiver functions) recorded from 1995 to 2008 at 8 three-component short-period stations of Tabriz Telemetry Seismic Network. Our results obtained from P receiver functions indicate clear conversions at the Moho boundary. The Moho depth was firstly estimated from the delay time of the Moho converted phase relative to the direct P wave. Then we used the H-Vp/Vs stacking algorithm of Zhu and Kanamori to estimate the crustal thickness and Vp/Vs ratio underneath the stations with clear Moho multiples. We found an average Moho depth of 48 km, which varies between 38.5 and 53 km. The Moho boundary showed a significant deepening towards east and north. This may reveal a crustal thickening towards northeast possibly due to the collision between the Central Iran and South Caspian plates. The obtained average Vp/Vs ratio was estimated to be 1.76, which varies between 1.73 and 1.82. The crustal structure was also determined by modeling of P receiver functions. We obtained a three-layered model for the crust beneath this area. The thickness of the layers is estimated to be 6–11, 18–35, and 38–53 km, respectively. The average of the shear wave velocity was calculated to be 3.4 km/s in the crust and reaches 4.3 km/s below the Moho discontinuity. The crustal thickness values obtained from P receiver functions are in good agreement with those derived by S receiver functions. In addition, clear conversions with negative polarity were observed at ~8.7 s in S receiver functions, which could be related to the conversion at the LAB. This may show a relatively thin continental lithosphere of about 85 km implying that the lithosphere was influenced by various geodynamical reworking processes in the past.  相似文献   
179.
180.
Numerical studies have been conducted for low- and medium-rise rocking structures to investigate their efficiency as earthquake-resisting systems in comparison with conventional structures. Several non-linear time-history analyses have been performed to evaluate seismic performance of selected cases at desired ground shaking levels, based on key parameters such as total and flexural story drifts and residual deformations. The Far-field record set is selected as input ground motions and median peak values of key parameters are taken as best estimates of system response. In addition, in order to evaluate the probability of exceeding relevant damage states, analytical fragility curves have been developed based on the results of the incremental dynamic analysis procedure. Small exceedance probabilities and acceptable margins against collapse, together with minor associated damages in main structural members, can be considered as superior seismic performance for medium-rise rocking systems. Low-rise rocking systems could provide significant performance improvement over their conventional counterparts notwithstanding certain weaknesses in their seismic response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号