首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1058篇
  免费   67篇
  国内免费   37篇
测绘学   64篇
大气科学   57篇
地球物理   337篇
地质学   553篇
海洋学   49篇
天文学   34篇
综合类   12篇
自然地理   56篇
  2024年   4篇
  2023年   3篇
  2022年   43篇
  2021年   59篇
  2020年   61篇
  2019年   42篇
  2018年   110篇
  2017年   91篇
  2016年   115篇
  2015年   68篇
  2014年   93篇
  2013年   125篇
  2012年   64篇
  2011年   65篇
  2010年   39篇
  2009年   34篇
  2008年   26篇
  2007年   15篇
  2006年   21篇
  2005年   3篇
  2004年   14篇
  2003年   6篇
  2002年   4篇
  2001年   8篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
  1971年   4篇
  1969年   1篇
排序方式: 共有1162条查询结果,搜索用时 15 毫秒
951.
The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeling and many researchers have worked on this topic. This study is an effort to define linear and area seismic sources for Northern Iran. The linear or fault sources are developed based on tectonic features and characteristic earthquakes while the area sources are developed based on spatial distribution of small to moderate earthquakes. Time-dependent recurrence relationships are developed for fault sources using renewal approach while time-independent frequency-magnitude relationships are proposed for area sources based on Poisson process. GIS functionalities are used in this study to introduce and incorporate spatial-temporal and geostatistical indices in delineating area seismic sources. The proposed methodology is used to model seismic sources for an area of about 500 by 400 square kilometers around Tehran. Previous researches and reports are studied to compile an earthquake/fault catalog that is as complete as possible. All events are transformed to uniform magnitude scale; duplicate events and dependent shocks are removed. Completeness and time distribution of the compiled catalog is taken into account. The proposed area and linear seismic sources in conjunction with defined recurrence relationships can be used to develop time-dependent probabilistic seismic hazard analysis of Northern Iran.  相似文献   
952.
Stochastic Environmental Research and Risk Assessment - Considering the importance of climate change and its effects, especially in recent decades, the forecast of future climate conditions can be...  相似文献   
953.
Stochastic Environmental Research and Risk Assessment - In many geoscience applications, the data extracted from environmental variables are very limited. Multiple-point geostatistical (MPS)...  相似文献   
954.
Sequential Gaussian simulation is one of the most widespread algorithms for simulating regionalized variables in the earth sciences. Simplicity and flexibility of this algorithm are the most important reasons that make it popular, but its implementation is highly dependent on a screen effect approximation that allows users to use a moving neighborhood instead of a unique neighborhood. Because of this, the size of the moving neighborhood the number of conditioning data and the size of variogram range are important in the simulation process and should be chosen carefully. In this work, different synthetic and real case studies are presented to show the effect of the neighborhood size the number of conditioning data and the size of variogram range on the simulation result, with respect to the reproduction of the model first and second-order parameters. Results indicate that, in both conditional and non-conditional simulation cases, using a neighborhood with <50 conditioning data may lead to an inaccurate reproduction of the model statistics, and some cases require considering more than 200 conditioning data. It also can be understood from the result of example 3 that when the variogram range is beg compared to the simulation domain determination of inaccurate simulation program is harder.  相似文献   
955.
The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz’s inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48–50 km) and the Kottas Mountains (48–50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34–38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24–28 km), while in West Antarctica the Moho depth minima are along the West Antarctic Rift System under the Bentley depression (20–22 km) and Ross Sea Ice Shelf (16–24 km). The gravimetric result confirmed a maximum extension of the Antarctic continental margins under the Ross Sea Embayment and the Weddell Sea Embayment with an extremely thin continental crust (10–20 km).  相似文献   
956.
957.
Complex and variable nature of the river sediment yield caused many problems in estimating the long-term sediment yield and problems input into the reservoirs. Sediment Rating Curves (SRCs) are generally used to estimate the suspended sediment load of the rivers and drainage watersheds. Since the regression equations of the SRCs are obtained by logarithmic retransformation and have a little independent variable in this equation, they also overestimate or underestimate the true sediment load of the rivers. To evaluate the bias correction factors in Kalshor and Kashafroud watersheds, seven hydrometric stations of this region with suitable upstream watershed and spatial distribution were selected. Investigation of the accuracy index (ratio of estimated sediment yield to observed sediment yield) and the precision index of different bias correction factors of FAO, Quasi-Maximum Likelihood Estimator (QMLE), Smearing, and Minimum-Variance Unbiased Estimator (MVUE) with LSD test showed that FAO coefficient increases the estimated error in all of the stations. Application of MVUE in linear and mean load rating curves has not statistically meaningful effects. QMLE and smearing factors increased the estimated error in mean load rating curve, but that does not have any effect on linear rating curve estimation.  相似文献   
958.
Rock typing and flow unit detection are more challenging in clastic reservoirs with a uniform pore system. An integrated workflow based on well logs, inverted seismic data and rock physics models is proposed and developed to address such challenges. The proposed workflow supplies a plausible reservoir model for further investigation and adds extra information. Then, this workflow has been implemented in order to define different rock types and flow units in an oilfield in the Persian Gulf, where some of these difficulties have been observed. Here, rock physics models have the leading role in our proposed workflow by providing a diagnostic framework in which we successfully differentiate three rock types with variant characteristics on the given wells. Furthermore, permeability and porosity are calculated using the available rock physics models to define several flow units. Then, we extend our investigation to the entire reservoir by means of simultaneous inversion and rock physics models. The outcomes of the study suggest that in sediments with homogeneous pore size distribution, other reservoir properties such as shale content and cementation (which have distinct effects on the elastic domain) can be used to identify rock types and flow units. These reservoir properties have more physical insights for modelling purposes and can be distinguished on seismic cube using proper rock physics models. The results illustrate that the studied reservoir mainly consists of rock type B, which is unconsolidated sands and has the characteristics of a reservoir for subsequent fluid flow unit analysis. In this regard, rock type B has been divided into six fluid units in which the first detected flow unit is considered as the cleanest unit and has the highest reservoir process speed about 4800 to 5000 mD. Here, reservoir quality decreases from flow unit 1 to flow unit 6.  相似文献   
959.

Given the interest in future space missions devoted to the exploration of key moons in the solar system and that may involve libration point orbits, an efficient design strategy for transfers between moons is introduced that leverages the dynamics in these multi-body systems. The moon-to-moon analytical transfer (MMAT) method is introduced, comprised of a general methodology for transfer design between the vicinities of the moons in any given system within the context of the circular restricted three-body problem, useful regardless of the orbital planes in which the moons reside. A simplified model enables analytical constraints to efficiently determine the feasibility of a transfer between two different moons moving in the vicinity of a common planet. In particular, connections between the periodic orbits of such two different moons are achieved. The strategy is applicable for any type of direct transfers that satisfy the analytical constraints. Case studies are presented for the Jovian and Uranian systems. The transition of the transfers into higher-fidelity ephemeris models confirms the validity of the MMAT method as a fast tool to provide possible transfer options between two consecutive moons.

  相似文献   
960.
Abstract

This article presents the performance of the short-term bearing capacity on soft clay soil treated by Kenaf geotextile under vertical loading via a small-scale modelling test at unit gravity. The ground model was formulated by consolidating kaolin in a rigid testing compartment. In the loading test, the strip footing was represented by a rigid footing. For the treated case, a series of tests were performed to examine the effects of the burial depth of the Kenaf geotextile on the bearing capacity of the soft soil. The Kenaf geotextile was laid beneath the rigid footing (at the ground surface) and at 50, 75 and 100?mm depth from the soil surface. All the measured results of the Kenaf geotextile treated ground were compared with the untreated ground. The incorporation of Kenaf fibre geotextile was observed to enhance the bearing capacity of soft cohesive clay up to 281% depending upon the depth of the installed geotextile. The geotextile at the surface provided the highest bearing capacity and sustained the highest displacement at failure. The outcome of this research will promote the use of natural fibre geotextiles as sustainable earth reinforcement in temporary earthwork applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号