首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1125篇
  免费   61篇
  国内免费   39篇
测绘学   61篇
大气科学   60篇
地球物理   353篇
地质学   581篇
海洋学   55篇
天文学   43篇
综合类   12篇
自然地理   60篇
  2024年   4篇
  2023年   4篇
  2022年   48篇
  2021年   60篇
  2020年   67篇
  2019年   43篇
  2018年   114篇
  2017年   101篇
  2016年   122篇
  2015年   68篇
  2014年   97篇
  2013年   129篇
  2012年   72篇
  2011年   66篇
  2010年   39篇
  2009年   38篇
  2008年   29篇
  2007年   16篇
  2006年   21篇
  2005年   3篇
  2004年   14篇
  2003年   7篇
  2002年   4篇
  2001年   8篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   7篇
  1989年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
  1971年   4篇
  1969年   1篇
排序方式: 共有1225条查询结果,搜索用时 0 毫秒
151.
Time‐lapse seismic analysis is utilized in CO2 geosequestration to verify the CO2 containment within a reservoir. A major risk associated with geosequestration is a possible leakage of CO2 from the storage formation into overlaying formations. To mitigate this risk, the deployment of carbon capture and storage projects requires fast and reliable detection of relatively small volumes of CO2 outside the storage formation. To do this, it is necessary to predict typical seepage scenarios and improve subsurface seepage detection methods. In this work we present a technique for CO2 monitoring based on the detection of diffracted waves in time‐lapse seismic data. In the case of CO2 seepage, the migrating plume might form small secondary accumulations that would produce diffracted, rather than reflected waves. From time‐lapse data analysis, we are able to separate the diffracted waves from the predominant reflections in order to image the small CO2 plumes. To explore possibilities to detect relatively small amounts of CO2, we performed synthetic time‐lapse seismic modelling based on the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Otway project data. The detection method is based on defining the CO2 location by measuring the coherency of the signal along diffraction offset‐traveltime curves. The technique is applied to a time‐lapse stacked section using a stacking velocity to construct offset‐traveltime curves. Given the amount of noise found in the surface seismic data, the predicted minimum detectable amount of CO2 is 1000–2000 tonnes. This method was also applied to real data obtained from a time‐lapse seismic physical model. The use of diffractions rather than reflections for monitoring small amounts of CO2 can enhance the capability of subsurface monitoring in CO2 geosequestration projects.  相似文献   
152.
The aim of this study was to assess trace metal contamination of drinking water in the Pearl Valley, Azad Jammu and Kashmir (Pakistan). The objectives were to determine physical properties and the dissolved concentration of five trace metals, i. e., lead, copper, nickel, zinc, and manganese, in drinking water samples collected from various sites of municipal water supply, natural water springs and wells in the valley. Concentrations of the metals in the water samples were determined by flame atomic absorption spectrometry. Results showed physical parameters, i. e., appearance, taste and odor within acceptable limits and pH was between 5.5 and 7.0. The observed concentrations of the metals varied between sources of water samples and between sampling sites. Maximum dissolved concentration observed was 4.7 mg/L for Pb and Mn, 4.6 mg/L for Zn, 2.9 mg/L for Ni and 2.8 mg/L for Cu. The observed concentrations of the metals were compared with the World Health Organization's guideline values for drinking water. Overall, the quality of water samples taken from the water springs at Mutyal Mara and Bonjosa was good; however, the water quality was unsuitable for drinking in Kiraki, Kharick, and Pothi Bala localities particularly. Finally, the authors discuss possible causes for increased concentrations of the trace metals in drinking water in the study area.  相似文献   
153.
The grain size distribution (GSD) of sediment in comparison with the original soil GSD is discussed under different slopes (5, 15 and 25%) and rainfall intensities (30, 60 and 90 mm h–1 with respective duration of 30, 15 and 10 min) but identical runoff (15 mm). The sediment quantification was carried out by raindrop-induced flow transport (RIFT) or/and transport by flow (FT) using a rainfall simulator and a 6 × 1 m2 erosion plot and a silt loam. The results show a high degree of enrichment for size classes of 2–4 and 4–8 μm and a high degree of depletion for size classes of >63 μm under different slopes and rainfall intensities. In addition, the results show that the experimental enrichment ratio (ER) for particle size <16 μm under different slopes and rainfall intensities was greater than 1, while the ER for particle size >32 μm was less than 1.  相似文献   
154.
Radon transform is a powerful tool with many applications in different stages of seismic data processing, because of its capability to focus seismic events in the transform domain. Three-parameter Radon transform can optimally focus and separate different seismic events, if its basis functions accurately match the events. In anisotropic media, the conventional hyperbolic or shifted hyperbolic basis functions lose their accuracy and cannot preserve data fidelity, especially at large offsets. To address this issue, we propose an accurate traveltime approximation for transversely isotropic media with vertical symmetry axis, and derive two versions of Radon basis functions, time-variant and time-invariant. A time-variant basis function can be used in time domain Radon transform algorithms while a time-invariant version can be used in, generally more efficient, frequency domain algorithms. Comparing the time-variant and time-invariant Radon transform by the proposed basis functions, the time-invariant version can better focus different seismic events; it is also more accurate, especially in presence of vertical heterogeneity. However, the proposed time-invariant basis functions are suitable for a specific type of layered anisotropic media, known as factorized media. We test the proposed methods and illustrate successful applications of them for trace interpolation and coherent noise attenuation.  相似文献   
155.
Tracer breakthrough curves provide valuable information about the traced media, especially in inherently heterogeneous karst aquifers. In order to study the effect of variations in hydraulic gradient and conduit systems on breakthrough curves, a bench scale karst model was constructed. The bench scale karst model contains both matrix and a conduit. Eight tracing tests were conducted under a wide range of hydraulic gradients from 1 to greater than 5 for branchwork and network-conduit systems. Sampling points at varying distances from the injection point were utilized. Results demonstrate that mean tracer velocities, tracer mass recovery and linear rising slope of the breakthrough curves were directly controlled by hydraulic gradient. As hydraulic gradient increased, both one half the time for peak concentration and one fifth the time for peak concentration decreased. The results demonstrate the variations in one half the time for peak concentration and one fifth the time for peak concentration of the descending limb for different sampling points under differing hydraulic gradients are mainly controlled by the interactions of advection with dispersion. The results are discussed from three perspectives: different conduit systems, different hydraulic-gradient conditions, and different sampling points. The research confirmed the undeniable role of hydrogeological setting (i.e., hydraulic gradient and conduit system) on the shape of the breakthrough curve. The extracted parameters (mobile-fluid velocity, tracer-mass recovery, linear rising limb, one half the time for peak concentration, and one fifth the time for peak concentration) allow for differentiating hydrogeological settings and enhance interpretations the tracing tests in karst aquifers.  相似文献   
156.
Sarfaraz  Mohammad  Pak  Ali 《Ocean Dynamics》2019,69(6):657-678
Ocean Dynamics - Hydrodynamics of highly nonlinear cnoidal waves and their subsequent strong plunging breakers are among the least understood and most significant issues in coastal engineering. In...  相似文献   
157.
158.
159.
Most of the studies related to the modeling of masonry structures have by far investigated either the in‐plane (IP) or the out‐of‐plane (OP) behavior of walls. However, seismic loads mostly impose simultaneous IP and OP demands on load‐bearing or shear masonry walls. Thus, there is a need to reconsider design equations of unreinforced masonry walls by taking into account bidirectional effects. The intent of this study is to investigate the bidirectional behavior of an unreinforced masonry wall with a typical aspect ratio under different displacement‐controlled loading directions making use of finite element analysis. For this purpose, the numerical procedure is first validated against the results of the tests on walls with different failure modes conducted by the authors. Afterward, the response of the wall systems is evaluated with increasing top displacement having different orientations. A set of 19 monotonic and three cyclic loading analyses are performed, and the results are discussed in terms of the variation of failure modes and load–displacement diagrams. Moreover, the results of wall capacity in each loading condition are compared with those of the ASCE41‐06 formulations. The results indicate that the direction of the resultant force, vectorial summation of IP and OP forces, of the wall is initially proportional to the ratio of stiffness in the IP and the OP directions. However, with the increase of damage, the resultant force direction inclines towards the wall's longitudinal direction regardless of the direction of the imposed displacement. Finally, recommendations are made for applicability of ASCE41‐06 formulations under different bidirectional loading conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
160.
Inflow to a tunnel is a great public concern and is closely related to groundwater hydrology, geotechnical engineering, and mining engineering, among other disciplines. Rapid computation of inflow to a tunnel provides a timely means for quickly assessing the inflow discharge, thus is critical for safe operation of tunnels. Dewatering of tunnels is another engineering practice that should be planned. In this study, an analytical solution of the inflow to a tunnel in a fractured unconfined aquifer is obtained. The solution takes into account either the spherical or slab-shaped matrix block and the unsteady state interporosity flow. The instantaneous drainage water table and anisotropic hydraulic conductivities of the fractures network are also considered. Both uniform flux and uniform head boundary condition are considered to simulate the constant head boundary condition in the tunnel. The effects of the hydraulic parameters of the fractured aquifer on the inflow variation of the tunnel are explored. The application of the presented solution to obtain the optimum location and discharge of the well to minimize the inflow to a tunnel is illustrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号