首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1409篇
  免费   83篇
  国内免费   47篇
测绘学   83篇
大气科学   77篇
地球物理   413篇
地质学   746篇
海洋学   61篇
天文学   71篇
综合类   14篇
自然地理   74篇
  2024年   4篇
  2023年   5篇
  2022年   53篇
  2021年   81篇
  2020年   73篇
  2019年   60篇
  2018年   142篇
  2017年   122篇
  2016年   161篇
  2015年   87篇
  2014年   126篇
  2013年   155篇
  2012年   92篇
  2011年   92篇
  2010年   62篇
  2009年   50篇
  2008年   32篇
  2007年   21篇
  2006年   24篇
  2005年   4篇
  2004年   15篇
  2003年   7篇
  2002年   4篇
  2001年   8篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   6篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1973年   1篇
  1972年   2篇
  1971年   4篇
  1969年   1篇
排序方式: 共有1539条查询结果,搜索用时 578 毫秒
191.
Among numerous offshore structures used in oil extraction, jacket platforms are still the most favorable ones in shallow waters. In such structures, log piles are used to pin the substructure of the platform to the seabed. The pile’s geometrical and geotechnical properties are considered as the main parameters in designing these structures. In this study, ANSYS was used as the FE modeling software to study the geometrical and geotechnical properties of the offshore piles and their effects on supporting jacket platforms. For this purpose, the FE analysis has been done to provide the preliminary data for the fuzzy-logic post-process. The resulting data were implemented to create Fuzzy Inference System (FIS) classifications. The resultant data of the sensitivity analysis suggested that the orientation degree is the main factor in the pile’s geometrical behavior because piles which had the optimal operational degree of about 5° are more sustained. Finally, the results showed that the related fuzzified data supported the FE model and provided an insight for extended offshore pile designs.  相似文献   
192.
The ‘Coral Health Chart’ has become a popular tool for monitoring coral bleaching worldwide. The scleractinian coral Acropora downingi (Wallace 1999) is highly vulnerable to temperature anomalies in the Persian Gulf. Our study tested the reliability of Coral Health Chart scores for the assessment of bleaching-related changes in the mitotic index (MI) and density of zooxanthellae cells in A. downingi in Qeshm Island, the Persian Gulf. The results revealed that, at least under severe conditions, it can be used as an effective proxy for detecting changes in the density of normal, transparent, or degraded zooxanthellae and MI. However, its ability to discern changes in pigment concentration and total zooxanthellae density should be viewed with some caution in the Gulf region, probably because the high levels of environmental variability in this region result in inherent variations in the characteristics of zooxanthellae among “healthy” looking corals.  相似文献   
193.
Oilfield development involves several key decisions, including the number, type (injection/production), location, drilling schedule, and operating control trajectories of the wells. Without considering the coupling between these decision variables, any optimization problem formulation is bound to find suboptimal solutions. This paper presents a unified formulation for oilfield development optimization that seeks to simultaneously optimize these decision variables. We show that the source/sink term of the governing multiphase flow equations includes all the above decision variables. This insight leads to a novel and unified formulation of the field development optimization problem that considers the source/sink term in reservoir simulation equations as optimization decision variables. Therefore, a single optimization problem is formulated to simultaneously search for optimal decision variables by determining the complete dynamic form of the source/sink terms. The optimization objective function is the project net present value (NPV), which involves discounted revenue from oil production, operating costs (e.g. water injection and recycling), and capital costs (e.g., cost of drilling wells). A major difficulty after formulating the generalized field development optimization problem is finding an efficient solution approach. Since the total number of cells in a reservoir model far exceeds the number of cells that are intersected by wells, the source/sink terms tend to be sparse. In fact, the drilling cost in the NPV objective function serves as a sparsity-promoting penalty to minimize the number of wells while maximizing the NPV. Inspired by this insight, we solve the optimization problem using an efficient gradient-based method based on recent algorithmic developments in sparse reconstruction literature. The gradients of the NPV function with respect to the source/sink terms is readily computed using well-established adjoint methods. Numerical experiments are presented to evaluate the feasibility and performance of the generalized field development formulation for simultaneous optimization of the number, location, type, controls, and drilling schedule of the wells.  相似文献   
194.
A high-resolution simulation model of a heterogeneous low-permeability rock sample is used to investigate the effects of physical and biogenic sedimentary structures on scaling and anisotropy of absolute permeability at the core scale. Several simulation sub-samples with random locations and volumes were also selected for evaluation of the effects of scale and lithological composition on the calculated permeability. Vertical and horizontal permeability values (from whole core simulation) are in good agreement with routine core analysis (RCA) measurements from offsetting cores. Despite relatively good reservoir quality associated with geobodies of biogenic and relic bedding structures, results from the full diameter core simulation demonstrate that their limited volumetric abundance and restricted connectivity prevent these features from controlling fluid flow in these rocks. In fact, permeability seems to be dominated by the tighter encasing matrix, which exhibits average permeability values very close to those reported from RCA. Geometric averaging offers a better representation for the upscaling of horizontal permeability datasets; whereas, both geometric and harmonic averaging work similarly well for the vertical measurements. The methodology used in this work is particularly applicable to the detailed characterization of reservoir rocks with a high degree of heterogeneity caused by biological reworking and diagenesis.  相似文献   
195.
International Journal of Earth Sciences - The Zagros Orogen developed as a result of Arabia–Eurasia collision. New in situ detrital zircon U–Pb and Hf isotopic analyses from a Cenozoic...  相似文献   
196.
The present paper is an attempt to integrate a semi-automated object-based image analysis (OBIA) classification framework and a cellular automata-Markov model to study land use/land cover (LULC) changes. Land use maps for the Sarab plain in Iran for the years 2000, 2006, and 2014 were created from Landsat satellite data, by applying an OBIA classification using the normalized difference vegetation index, salinity index, moisture stress index, soil-adjusted vegetation index, and elevation and slope indicators. The classifications yielded overall accuracies of 91, 93, and 94% for 2000, 2006, and 2014, respectively. Finally, using the transition matrix, the spatial distribution of land use was simulated for 2020. The results of the study revealed that the number of orchards with irrigated agriculture and dry-farm agriculture in the Sarab plain is increasing, while the amount of bare land is decreasing. The results of this research are of great importance for regional authorities and decision makers in strategic land use planning.  相似文献   
197.
In the current research, the ground-penetrating radar (GPR) method has been employed to identify physical and geometrical parameters of buried cylindrical structures using the pattern recognition approach. To achieve this goal, the well-established mathematical relationships between geometrical parameters of cylindrical target (radius, burial depth, and horizontal location) and the associated GPR hyperbolic response characteristics are employed using the template matching method. In order to validate the applicability of the template matching method in providing estimates of such parameters, the method is first examined on GPR responses of synthetic models with known geometrical parameters followed by applying on real data using two different similarity criteria including 2-D spatial convolution and normalized cross correlation in the wave number domain. In the first step, the GPR responses of 71 synthetic models encompassing one, two, and three horizontal cylinders were produced using the improved 2-D finite difference in frequency domain. Then, appropriate preprocessing sequences to reduce random noise caused by forward modeling were applied on synthetic data. The proposed algorithm applied on several synthetic model responses could estimate the known geometrical parameters of the buried cylinders with acceptable accuracy (maximum error of 15%). The template matching algorithm was also used to extract geometrical parameters of water and wastewater pipes buried in Imam Hossein Square, Isfahan city, as real GPR data. Depending on environmental conditions and subsurface host formation, the real GPR data normally contain a variety of noises; therefore, a series of appropriate objective preprocessing and processing stages were designed in order to apply on real GPR images before deploying template matching algorithm. The applicability of the template matching algorithm on real data and validity of the estimated parameters were proved based on assessing the accuracy of the estimated geometrical parameters of respective pipes through GPR response versus the measured parameters. The proposed algorithm was designed in such a way that all steps of estimating geometrical parameters of buried cylindrical targets are automatically carried out.  相似文献   
198.
Dehoo manganese deposit is located 52 km to the south of Zahedan in Sistan and Baluchestan Province, southeastern Iran. This deposit that lies in the central part of the Iranian Flysch Zone is lenticular in shape and lies above the micritic limestone-radiolarite cherts of the upper Cretaceous ophiolite unit. It is hosted within the reddish to brown radiolarite cherts and in places interlinks with them, so that the radiolarite chert packages play a key role for Mn mineralization in the region. Investigated ore-paragenetic successions and the geochemical characteristics of the Dehoo deposit were studied by means of major oxide, trace, and rare earth element (REE) contents that provide information as to the mineral origin. Strong positive correlations were found between major oxides and trace elements (Al2O3-TiO2, r = 0.95; TiO2-MgO, r = 0.94; Fe2O3-Al2O3, r = 0.90; MgO-Al2O3, r = 0.84; MgO-Fe2O3, r = 0.88; Fe2O3-TiO2, r = 0.91; Fe2O3-K2O, r = 0.74; Al2O3-K2O, r = 0.69; Al2O3-V, r = 0.72; TiO2-V, r = 0.73, and MgO-V, r = 0.69) that testify to the contribution of mafic terrigenous detrital material to the deposit. Chondrite-normalized REE patterns of all ore samples are characterized by negative Ce (0.06–0.15, average 0.10) and slightly positive Eu (0.29–0.45, average 0.36) anomalies. Based on ratios of Mn/Fe (average 56.23), Co/Ni (average 0.33), Co/Zn (average 0.38), U/Th (average 3.40), La/Ce (average 1.45), Lan/Ndn (average 2.16), Dyn/Ybn (average 0.33), and light REE/heavy REE (average 8.40; LREE > HREE), as well as Ba (average 920 ppm) and total REE contents (average 6.96 ppm) negative Ce and positive Eu anomalies, Dehoo could be considered a predominantly submarine hydrothermal Mn deposit complemented by terrigenous detrital mafic material.  相似文献   
199.
Realistic and accurate static geologic models are an essential element needed to predict the behavior of subsurface reservoirs and play an important role in petroleum engineering. Data used in the development of a static geologic model are gathered from various sources, such as seismic, log, and core data, each of them providing information on different physical properties of interest and with varying degrees of resolution. Compiling all data from various sources into a single representation of the subsurface formation of interest is a daily challenge for many petroleum geologists and engineers. This paper describes a framework to develop and select process-mimicking models that are consistent with available seismic attributes, namely impedance. Using a process-mimicking modeling package, 75 models of a fluvial meandering system are generated, one of which is chosen as the “true” model and masked thereafter. The implemented selection method relies on the degree of similarity in the histogram of representations of clusters of all possible patterns in the seismic impedance domain based on each process-mimicking model and that of the “true” model at several resolutions. The results demonstrate the effectiveness of the use of a weighted average divergence distance across multiple levels to select process-mimicking models that honor seismic data the best.  相似文献   
200.
It is important to have qualitative as well as quantitative understanding of the hydraulic exchange between lake and groundwater for effective water resource management. Dal, a famous urban fresh water lake, plays a fundamental role in social, cultural and economic dynamics of the Kashmir Valley. In this paper geochemical, isotopic and hydrological mass balance approaches are used to constrain the lake water–groundwater interaction of Dal Lake and to identify the sources of lake water. Water samples of precipitation (n = 27), lake water (n = 18) and groundwater (n = 32) were collected across the lake and its catchment for the analysis of δ18O and δ2H. A total of 444 lake water samples and 440 groundwater samples (springs, tube wells and dug wells) were collected for the analysis of Ca2+, Mg2+, HCO3 ?, SO4 2?, Cl?, NO3 ?, Na+ and K+. Water table and lake water level were monitored at 40 observation locations in the catchment. Water table map including pH and EC values corroborate and verify the gaining nature of the Dal Lake. Stable isotopes of lake water in Boddal and Gagribal basins showed more deviation from the global meteoric water line than Hazratbal and Nigeen basins, indicating the evaporation of lake water. The isotopic and geochemical mass balance suggested that groundwater contributes a significant proportion (23–40%) to Dal Lake. The estimated average groundwater contribution to Dal Lake ranged from 31.2 × 103 to 674 × 103 m3 day?1 with an average of 276 × 103 m3 day?1. The study will be useful to delineate the possible sources of nutrients and pollutants entering the lake and for the management of lake water resources for sustainable development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号