首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1460篇
  免费   81篇
  国内免费   54篇
测绘学   82篇
大气科学   66篇
地球物理   433篇
地质学   755篇
海洋学   73篇
天文学   72篇
综合类   19篇
自然地理   95篇
  2024年   5篇
  2023年   4篇
  2022年   54篇
  2021年   71篇
  2020年   80篇
  2019年   58篇
  2018年   142篇
  2017年   117篇
  2016年   140篇
  2015年   83篇
  2014年   124篇
  2013年   164篇
  2012年   80篇
  2011年   88篇
  2010年   54篇
  2009年   52篇
  2008年   45篇
  2007年   26篇
  2006年   27篇
  2005年   12篇
  2004年   22篇
  2003年   14篇
  2002年   13篇
  2001年   14篇
  2000年   5篇
  1999年   9篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   6篇
  1993年   3篇
  1992年   8篇
  1991年   4篇
  1990年   9篇
  1989年   4篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1979年   4篇
  1978年   2篇
  1976年   2篇
  1973年   2篇
  1972年   2篇
  1971年   4篇
  1969年   1篇
  1966年   1篇
  1960年   1篇
排序方式: 共有1595条查询结果,搜索用时 15 毫秒
111.
112.
Inflow to a tunnel is a great public concern and is closely related to groundwater hydrology, geotechnical engineering, and mining engineering, among other disciplines. Rapid computation of inflow to a tunnel provides a timely means for quickly assessing the inflow discharge, thus is critical for safe operation of tunnels. Dewatering of tunnels is another engineering practice that should be planned. In this study, an analytical solution of the inflow to a tunnel in a fractured unconfined aquifer is obtained. The solution takes into account either the spherical or slab-shaped matrix block and the unsteady state interporosity flow. The instantaneous drainage water table and anisotropic hydraulic conductivities of the fractures network are also considered. Both uniform flux and uniform head boundary condition are considered to simulate the constant head boundary condition in the tunnel. The effects of the hydraulic parameters of the fractured aquifer on the inflow variation of the tunnel are explored. The application of the presented solution to obtain the optimum location and discharge of the well to minimize the inflow to a tunnel is illustrated.  相似文献   
113.
We computed P and S receiver functions to investigate the lithospheric structure beneath the northwest Iran and compute the Vp/Vs ratio within the crust of this seismologically active area. Our results enabled us to map the lateral variations of the Moho as well as those of the lithosphere–asthenosphere boundary (LAB) beneath this region. We selected data from teleseismic events (Mb?>?5.5, epicentral distance between 30° and 95° for P receiver functions and Mb?>?5.7, epicentral distance between 60° and 85° for S receiver functions) recorded from 1995 to 2008 at 8 three-component short-period stations of Tabriz Telemetry Seismic Network. Our results obtained from P receiver functions indicate clear conversions at the Moho boundary. The Moho depth was firstly estimated from the delay time of the Moho converted phase relative to the direct P wave. Then we used the H-Vp/Vs stacking algorithm of Zhu and Kanamori to estimate the crustal thickness and Vp/Vs ratio underneath the stations with clear Moho multiples. We found an average Moho depth of 48 km, which varies between 38.5 and 53 km. The Moho boundary showed a significant deepening towards east and north. This may reveal a crustal thickening towards northeast possibly due to the collision between the Central Iran and South Caspian plates. The obtained average Vp/Vs ratio was estimated to be 1.76, which varies between 1.73 and 1.82. The crustal structure was also determined by modeling of P receiver functions. We obtained a three-layered model for the crust beneath this area. The thickness of the layers is estimated to be 6–11, 18–35, and 38–53 km, respectively. The average of the shear wave velocity was calculated to be 3.4 km/s in the crust and reaches 4.3 km/s below the Moho discontinuity. The crustal thickness values obtained from P receiver functions are in good agreement with those derived by S receiver functions. In addition, clear conversions with negative polarity were observed at ~8.7 s in S receiver functions, which could be related to the conversion at the LAB. This may show a relatively thin continental lithosphere of about 85 km implying that the lithosphere was influenced by various geodynamical reworking processes in the past.  相似文献   
114.
Self-centering rocking walls offer the possibility of minimizing repair costs and downtimes, and also nullify the residual drift after seismic events, thanks to their self-centering properties. In this paper, the effect of axial stress ratio on the behavior of monolithic self-centering rocking walls is investigated by utilizing a developed finite element model. To verify the validity of the finite element model, results and observed damage in the model are compared with those of a full-scale wall test. The axial stress ratio is varied from 0.024 to 0.30 while keeping the other structural parameters constant. For qualitative damage evaluation, the observed damage in the model compared with expected damage states of desired performance levels. In order to evaluate the incurred damage quantitatively, the amount of crushing and damage in the wall is calculated by utilizing several ratios (crushing ratio and damage ratio). Furthermore, seismic response factors (i.e., μ, R and Cd) are calculated for different axial stress ratio values. The obtained results showed that, in order to satisfy the requirements of desired performance levels, the maximum axial stress ratio should be approximately within the range of 0.10–0.15. In addition, the maximum overall damage ratio and crushing ratio are suggested to be less than 5%. For axial stress ratio higher than 0.15, the flag-shaped pattern of hysteresis curves completely disappeared and the variation of displacement ductility is less sensitive to axial stress ratio. Considering the maximum axial stress ratio limited to 0.150, values of 4 and 3.5 are conservatively proposed as a period-independent response modification factor and displacement modification factor of the investigated structural wall, respectively.  相似文献   
115.
In the context of geological carbon sequestration (GCS), carbon dioxide (CO2) is often injected into deep formations saturated with a brine that may contain dissolved light hydrocarbons, such as methane (CH4). In this multicomponent multiphase displacement process, CO2 competes with CH4 in terms of dissolution, and CH4 tends to exsolve from the aqueous into a gaseous phase. Because CH4 has a lower viscosity than injected CO2, CH4 is swept up into a ‘bank’ of CH4‐rich gas ahead of the CO2 displacement front. On the one hand, this may provide a useful tracer signal of an approaching CO2 front. On the other hand, the emergence of gaseous CH4 is undesirable because it poses a leakage risk of a far more potent greenhouse gas than CO2 if the cap rock is compromised. Open fractures or faults and wells could result in CH4 contamination of overlying groundwater aquifers as well as surface emissions. We investigate this process through detailed numerical simulations for a large‐scale GCS pilot project (near Cranfield, Mississippi) for which a rich set of field data is available. An accurate cubic‐plus‐association equation‐of‐state is used to describe the non‐linear phase behavior of multiphase brine‐CH4‐CO2 mixtures, and breakthrough curves in two observation wells are used to constrain transport processes. Both field data and simulations indeed show the development of an extensive plume of CH4‐rich (up to 90 mol%) gas as a consequence of CO2 injection, with important implications for the risk assessment of future GCS projects.  相似文献   
116.
117.
ABSTRACT

This work examines 140 hydrological studies conducted in the Mediterranean region. It identifies key characteristics of the hydrological responses of Mediterranean catchments at various time scales and compares different methods and modelling approaches used for individual-catchment studies. The study area is divided into the northwestern (NWM), eastern (EM) and southern (SM) Mediterranean. The analysis indicates regional discrepancies in which the NWM shows the most extreme rainfall regime. A tendency for reduced water resources driven by both anthropogenic and climatic pressures and a more extreme rainfall regime are also noticeable. Catchments show very heterogeneous responses over time and space, resulting in limitations in hydrological modelling and large uncertainties in predictions. However, few models have been developed to address these issues. Additional studies are necessary to improve the knowledge of Mediterranean hydrological features and to account for regional specificities.
Editor D. Koutsoyiannis Associate editor A. Efstratiadis  相似文献   
118.
ABSTRACT

A novel approach is introduced for simulation of instantaneous unit hydrographs (IUHs). The model consists of a series of linear reservoirs that are connected to each other, and is referred to as the inter-connected linear reservoir model (ICLRM). By assuming the flow between two reservoirs is a linear function of the difference between the water levels in the reservoirs, a system of first-order linear differential equations is obtained as the ICLRM governing equation. By solving the equations, the discharge from the last reservoir is considered as an IUH. A small-scale laboratory device was constructed for the simulation of IUHs using the model. By studying four hydrographs extracted from the literature, and simulating them using both the ICLRM and the Nash model, it is concluded that the ICLRM can predict these hydrographs more accurately than the Nash model. Due to the simplicity of the construction and operation of the ICLRM and, more importantly, its visual aspect, the ICLRM may be considered as an effective educational tool for studying IUHs.  相似文献   
119.
In this study, we calculate accurate absolute locations for nearly 3,000 shallow earthquakes (≤20 km depth) that occurred from 1996 to 2010 in the Central Alborz region of northern Iran using a non-linear probabilistic relocation algorithm on a local scale. We aim to produce a consistent dataset with a realistic assessment of location errors using probabilistic hypocenter probability density functions. Our results indicate significant improvement in hypocenter locations and far less scattering than in the routine earthquake catalog. According to our results, 816 earthquakes have horizontal uncertainties in the 0.5–3.0 km range, and 981 earthquakes are relocated with focal-depth errors less than 3.0 km, even with a suboptimal network geometry. Earthquake relocated are tightly clustered in the eastern Tehran region and are mainly associated with active faults in the study area (the Mosha and Garmsar faults). Strong historical earthquakes have occurred along the Mosha and Garmsar faults, and the relocated earthquakes along these faults show clear north-dipping structures and align along east–west lineations, consistent with the predominant trend of faults within the study region. After event relocation, all seismicity lies in the upper 20 km of the crust, and no deep seismicity (>20 km depth) has been observed. In many circumstances, the seismicity at depth does not correlate with surface faulting, suggesting that the faulting at depth does not directly offset overlying sediments.  相似文献   
120.
Frequency analysis of climate extreme events in Zanjan, Iran   总被引:1,自引:1,他引:1  
In this study, generalized extreme value distribution (GEV) and generalized Pareto distribution (GPD) were fitted to the maximum and minimum temperature, maximum wind speed, and maximum precipitation series of Zanjan. Maximum (minimum) daily and absolute annual observations of Zanjan station from 1961 to 2011 were used. The parameters of the distributions were estimated using the maximum likelihood estimation method. Quantiles corresponding to 2, 5, 10, 25, 50, and 100 years return periods were calculated. It was found that both candidate distributions fitted to extreme events series, were statistically reasonable. Most of the observations from 1961 to 2011 were found to fall within 1–10 years return period. Low extremal index (θ) values were found for excess maximum and minimum temperatures over a high threshold, indicating the occurrence of consecutively high peaks. For the purpose of filtering the dependent observations to obtain a set of approximately independent threshold excesses, a declustering method was performed, which separated the excesses into clusters, then the de-clustered peaks were fitted to the GPD. In both models, values of the shape parameters of extreme precipitation and extreme wind speed were close to zero. The shape parameter was less negative in the GPD than the GEV. This leads to significantly lower return period estimates for high extremes with the GPD model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号