全文获取类型
收费全文 | 1460篇 |
免费 | 81篇 |
国内免费 | 54篇 |
专业分类
测绘学 | 82篇 |
大气科学 | 66篇 |
地球物理 | 433篇 |
地质学 | 755篇 |
海洋学 | 73篇 |
天文学 | 72篇 |
综合类 | 19篇 |
自然地理 | 95篇 |
出版年
2024年 | 5篇 |
2023年 | 4篇 |
2022年 | 54篇 |
2021年 | 71篇 |
2020年 | 80篇 |
2019年 | 58篇 |
2018年 | 142篇 |
2017年 | 117篇 |
2016年 | 140篇 |
2015年 | 83篇 |
2014年 | 124篇 |
2013年 | 164篇 |
2012年 | 80篇 |
2011年 | 88篇 |
2010年 | 54篇 |
2009年 | 52篇 |
2008年 | 45篇 |
2007年 | 26篇 |
2006年 | 27篇 |
2005年 | 12篇 |
2004年 | 22篇 |
2003年 | 14篇 |
2002年 | 13篇 |
2001年 | 14篇 |
2000年 | 5篇 |
1999年 | 9篇 |
1998年 | 5篇 |
1997年 | 6篇 |
1996年 | 4篇 |
1995年 | 6篇 |
1993年 | 3篇 |
1992年 | 8篇 |
1991年 | 4篇 |
1990年 | 9篇 |
1989年 | 4篇 |
1986年 | 3篇 |
1985年 | 4篇 |
1984年 | 3篇 |
1983年 | 3篇 |
1982年 | 4篇 |
1981年 | 2篇 |
1979年 | 4篇 |
1978年 | 2篇 |
1976年 | 2篇 |
1973年 | 2篇 |
1972年 | 2篇 |
1971年 | 4篇 |
1969年 | 1篇 |
1966年 | 1篇 |
1960年 | 1篇 |
排序方式: 共有1595条查询结果,搜索用时 15 毫秒
111.
112.
Inflow to a tunnel is a great public concern and is closely related to groundwater hydrology, geotechnical engineering, and mining engineering, among other disciplines. Rapid computation of inflow to a tunnel provides a timely means for quickly assessing the inflow discharge, thus is critical for safe operation of tunnels. Dewatering of tunnels is another engineering practice that should be planned. In this study, an analytical solution of the inflow to a tunnel in a fractured unconfined aquifer is obtained. The solution takes into account either the spherical or slab-shaped matrix block and the unsteady state interporosity flow. The instantaneous drainage water table and anisotropic hydraulic conductivities of the fractures network are also considered. Both uniform flux and uniform head boundary condition are considered to simulate the constant head boundary condition in the tunnel. The effects of the hydraulic parameters of the fractured aquifer on the inflow variation of the tunnel are explored. The application of the presented solution to obtain the optimum location and discharge of the well to minimize the inflow to a tunnel is illustrated. 相似文献
113.
Fataneh Taghizadeh-Farahmand Forough Sodoudi Narges Afsari Mohammad R. Ghassemi 《Journal of Seismology》2010,14(4):823-836
We computed P and S receiver functions to investigate the lithospheric structure beneath the northwest Iran and compute the Vp/Vs ratio within the crust of this seismologically active area. Our results enabled us to map the lateral variations of the Moho as well as those of the lithosphere–asthenosphere boundary (LAB) beneath this region. We selected data from teleseismic events (Mb?>?5.5, epicentral distance between 30° and 95° for P receiver functions and Mb?>?5.7, epicentral distance between 60° and 85° for S receiver functions) recorded from 1995 to 2008 at 8 three-component short-period stations of Tabriz Telemetry Seismic Network. Our results obtained from P receiver functions indicate clear conversions at the Moho boundary. The Moho depth was firstly estimated from the delay time of the Moho converted phase relative to the direct P wave. Then we used the H-Vp/Vs stacking algorithm of Zhu and Kanamori to estimate the crustal thickness and Vp/Vs ratio underneath the stations with clear Moho multiples. We found an average Moho depth of 48 km, which varies between 38.5 and 53 km. The Moho boundary showed a significant deepening towards east and north. This may reveal a crustal thickening towards northeast possibly due to the collision between the Central Iran and South Caspian plates. The obtained average Vp/Vs ratio was estimated to be 1.76, which varies between 1.73 and 1.82. The crustal structure was also determined by modeling of P receiver functions. We obtained a three-layered model for the crust beneath this area. The thickness of the layers is estimated to be 6–11, 18–35, and 38–53 km, respectively. The average of the shear wave velocity was calculated to be 3.4 km/s in the crust and reaches 4.3 km/s below the Moho discontinuity. The crustal thickness values obtained from P receiver functions are in good agreement with those derived by S receiver functions. In addition, clear conversions with negative polarity were observed at ~8.7 s in S receiver functions, which could be related to the conversion at the LAB. This may show a relatively thin continental lithosphere of about 85 km implying that the lithosphere was influenced by various geodynamical reworking processes in the past. 相似文献
114.
Abouzar Jafari Mohammad Reza Ghasemi Habib Akbarzadeh Bengar Behrooz Hassani 《Bulletin of Earthquake Engineering》2018,16(2):831-858
Self-centering rocking walls offer the possibility of minimizing repair costs and downtimes, and also nullify the residual drift after seismic events, thanks to their self-centering properties. In this paper, the effect of axial stress ratio on the behavior of monolithic self-centering rocking walls is investigated by utilizing a developed finite element model. To verify the validity of the finite element model, results and observed damage in the model are compared with those of a full-scale wall test. The axial stress ratio is varied from 0.024 to 0.30 while keeping the other structural parameters constant. For qualitative damage evaluation, the observed damage in the model compared with expected damage states of desired performance levels. In order to evaluate the incurred damage quantitatively, the amount of crushing and damage in the wall is calculated by utilizing several ratios (crushing ratio and damage ratio). Furthermore, seismic response factors (i.e., μ, R and Cd) are calculated for different axial stress ratio values. The obtained results showed that, in order to satisfy the requirements of desired performance levels, the maximum axial stress ratio should be approximately within the range of 0.10–0.15. In addition, the maximum overall damage ratio and crushing ratio are suggested to be less than 5%. For axial stress ratio higher than 0.15, the flag-shaped pattern of hysteresis curves completely disappeared and the variation of displacement ductility is less sensitive to axial stress ratio. Considering the maximum axial stress ratio limited to 0.150, values of 4 and 3.5 are conservatively proposed as a period-independent response modification factor and displacement modification factor of the investigated structural wall, respectively. 相似文献
115.
Mohamad R. Soltanian Mohammad A. Amooie David R. Cole Thomas H. Darrah David E. Graham Susan M. Pfiffner Tommy J. Phelps Joachim Moortgat 《Ground water》2018,56(2):176-186
In the context of geological carbon sequestration (GCS), carbon dioxide (CO2) is often injected into deep formations saturated with a brine that may contain dissolved light hydrocarbons, such as methane (CH4). In this multicomponent multiphase displacement process, CO2 competes with CH4 in terms of dissolution, and CH4 tends to exsolve from the aqueous into a gaseous phase. Because CH4 has a lower viscosity than injected CO2, CH4 is swept up into a ‘bank’ of CH4‐rich gas ahead of the CO2 displacement front. On the one hand, this may provide a useful tracer signal of an approaching CO2 front. On the other hand, the emergence of gaseous CH4 is undesirable because it poses a leakage risk of a far more potent greenhouse gas than CO2 if the cap rock is compromised. Open fractures or faults and wells could result in CH4 contamination of overlying groundwater aquifers as well as surface emissions. We investigate this process through detailed numerical simulations for a large‐scale GCS pilot project (near Cranfield, Mississippi) for which a rich set of field data is available. An accurate cubic‐plus‐association equation‐of‐state is used to describe the non‐linear phase behavior of multiphase brine‐CH4‐CO2 mixtures, and breakthrough curves in two observation wells are used to constrain transport processes. Both field data and simulations indeed show the development of an extensive plume of CH4‐rich (up to 90 mol%) gas as a consequence of CO2 injection, with important implications for the risk assessment of future GCS projects. 相似文献
116.
117.
Mohammad Merheb Roger Moussa François Colin Charles Perrin Nicolas Baghdadi 《水文科学杂志》2013,58(14):2520-2539
ABSTRACTThis work examines 140 hydrological studies conducted in the Mediterranean region. It identifies key characteristics of the hydrological responses of Mediterranean catchments at various time scales and compares different methods and modelling approaches used for individual-catchment studies. The study area is divided into the northwestern (NWM), eastern (EM) and southern (SM) Mediterranean. The analysis indicates regional discrepancies in which the NWM shows the most extreme rainfall regime. A tendency for reduced water resources driven by both anthropogenic and climatic pressures and a more extreme rainfall regime are also noticeable. Catchments show very heterogeneous responses over time and space, resulting in limitations in hydrological modelling and large uncertainties in predictions. However, few models have been developed to address these issues. Additional studies are necessary to improve the knowledge of Mediterranean hydrological features and to account for regional specificities.
Editor D. Koutsoyiannis Associate editor A. Efstratiadis 相似文献
118.
ABSTRACTA novel approach is introduced for simulation of instantaneous unit hydrographs (IUHs). The model consists of a series of linear reservoirs that are connected to each other, and is referred to as the inter-connected linear reservoir model (ICLRM). By assuming the flow between two reservoirs is a linear function of the difference between the water levels in the reservoirs, a system of first-order linear differential equations is obtained as the ICLRM governing equation. By solving the equations, the discharge from the last reservoir is considered as an IUH. A small-scale laboratory device was constructed for the simulation of IUHs using the model. By studying four hydrographs extracted from the literature, and simulating them using both the ICLRM and the Nash model, it is concluded that the ICLRM can predict these hydrographs more accurately than the Nash model. Due to the simplicity of the construction and operation of the ICLRM and, more importantly, its visual aspect, the ICLRM may be considered as an effective educational tool for studying IUHs. 相似文献
119.
Vahid Maleki Z. Hossein Shomali Mohammad Reza Hatami Mehrdad Pakzad Anthony Lomax 《Journal of Seismology》2013,17(2):615-628
In this study, we calculate accurate absolute locations for nearly 3,000 shallow earthquakes (≤20 km depth) that occurred from 1996 to 2010 in the Central Alborz region of northern Iran using a non-linear probabilistic relocation algorithm on a local scale. We aim to produce a consistent dataset with a realistic assessment of location errors using probabilistic hypocenter probability density functions. Our results indicate significant improvement in hypocenter locations and far less scattering than in the routine earthquake catalog. According to our results, 816 earthquakes have horizontal uncertainties in the 0.5–3.0 km range, and 981 earthquakes are relocated with focal-depth errors less than 3.0 km, even with a suboptimal network geometry. Earthquake relocated are tightly clustered in the eastern Tehran region and are mainly associated with active faults in the study area (the Mosha and Garmsar faults). Strong historical earthquakes have occurred along the Mosha and Garmsar faults, and the relocated earthquakes along these faults show clear north-dipping structures and align along east–west lineations, consistent with the predominant trend of faults within the study region. After event relocation, all seismicity lies in the upper 20 km of the crust, and no deep seismicity (>20 km depth) has been observed. In many circumstances, the seismicity at depth does not correlate with surface faulting, suggesting that the faulting at depth does not directly offset overlying sediments. 相似文献
120.
Frequency analysis of climate extreme events in Zanjan, Iran 总被引:1,自引:1,他引:1
Saeed Jahanbaksh Asl Ali Mohammad Khorshiddoust Yagob Dinpashoh Fatemeh Sarafrouzeh 《Stochastic Environmental Research and Risk Assessment (SERRA)》2013,27(7):1637-1650
In this study, generalized extreme value distribution (GEV) and generalized Pareto distribution (GPD) were fitted to the maximum and minimum temperature, maximum wind speed, and maximum precipitation series of Zanjan. Maximum (minimum) daily and absolute annual observations of Zanjan station from 1961 to 2011 were used. The parameters of the distributions were estimated using the maximum likelihood estimation method. Quantiles corresponding to 2, 5, 10, 25, 50, and 100 years return periods were calculated. It was found that both candidate distributions fitted to extreme events series, were statistically reasonable. Most of the observations from 1961 to 2011 were found to fall within 1–10 years return period. Low extremal index (θ) values were found for excess maximum and minimum temperatures over a high threshold, indicating the occurrence of consecutively high peaks. For the purpose of filtering the dependent observations to obtain a set of approximately independent threshold excesses, a declustering method was performed, which separated the excesses into clusters, then the de-clustered peaks were fitted to the GPD. In both models, values of the shape parameters of extreme precipitation and extreme wind speed were close to zero. The shape parameter was less negative in the GPD than the GEV. This leads to significantly lower return period estimates for high extremes with the GPD model. 相似文献