首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1045篇
  免费   66篇
  国内免费   37篇
测绘学   61篇
大气科学   57篇
地球物理   336篇
地质学   544篇
海洋学   49篇
天文学   34篇
综合类   11篇
自然地理   56篇
  2024年   4篇
  2023年   3篇
  2022年   43篇
  2021年   56篇
  2020年   61篇
  2019年   41篇
  2018年   109篇
  2017年   90篇
  2016年   114篇
  2015年   65篇
  2014年   93篇
  2013年   124篇
  2012年   63篇
  2011年   64篇
  2010年   39篇
  2009年   34篇
  2008年   26篇
  2007年   15篇
  2006年   20篇
  2005年   3篇
  2004年   14篇
  2003年   6篇
  2002年   4篇
  2001年   8篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
  1971年   4篇
  1969年   1篇
排序方式: 共有1148条查询结果,搜索用时 15 毫秒
881.
Soil dispersion is a phenomenon in which soil particles become afloat when they are exposed to water, and are carried away by the force of seepage. In spite of that soil dispersion is due to its chemical composition, the results obtained from the chemical methods, especially from the most widely used, Sherard method does not match with the results of well-known Pinhole test. This study tries to evaluate and modify the Sherard diagram for determination of dispersion potential of clayey soils. For this purpose, several natural soil samples were collected from different regions of Iran and some artificial soil samples were made by adding different percentages of four chemical agents, including sodium chloride, sodium carbonate, sodium sulfate, and sodium polyphosphate to a natural soil. The physical, chemical and index properties of all samples were determined and for determination of dispersion potential, the commonly used chemical test (Sherard method) and Pinhole test were employed. The results obtained from the tests showed that the Sherard chemical method which is solely based on the amount and type of the existing cations, is not able to determine soil dispersion correctly since the role of some anions, especially chloride is neglected. It was also found that among the existing anions in the soil, the chloride on the contrary to sodium acts as a flocculating factor. The results showed that by converting the vertical axis of the Sherard chart from sodium% to (sodium chloride)%, its conformity to the results of Pinhole tests increases considerably.  相似文献   
882.
The numerous non-sulfide zinc ore deposits were the historical basis for the development of zinc mining in Iran.They include the Mehdiabad,Irankouh and Angouran world-class deposits,as well as the Zarigan and Haft-har deposits.These deposits were formed by supergene oxidation of primary sulfide minerals during the complex interplay of tectonic uplift,karst development,changes in the level of the water table,and weathering.Zn(Pb)carbonates,Zn-hydrosilicates and associated hydrated phases directly replace the primary ore bodies or fill cavities along fractures related to uplift tectonics.Direct replacement of primary sulfides is accompanied by distal precipitation of zinc non-sulfide minerals in cavities or internal sediments filling.The mineralogy of the non-sulfide mineralization in all six deposits is generally complex and consists of smithsonite,hydrozincite,and hemimorphite as the main economic minerals,accompanied by iron and manganese oxy-hydroxides and residual clays.Commonly,non-sulfide minerals in these deposits consist of two types of ore:red zinc ore(RZO),rich in Zn,Fe,Pb-(As)and white zinc ore(WZO),typically with very high zinc grades but low concentrations of iron and lead.Typical minerals of the RZO are Fe-oxyhydroxides,goethite,hematite,hemimorphite,smithsonite and/or hydrozincite and cerussite.Common minerals of the WZO are smithsonite or hydrozincite and only minor amounts of Fe-oxyhydroxides and hemimorphite.  相似文献   
883.
In this study, the seismic stability of arch dam abutments is investigated within the framework of the probabilistic method. A large concrete arch dam is considered with six wedges for each abutment. The seismic safety of the dam abutments is studied with quasi-static analysis for different hazard levels. The Londe limit equilibrium method is utilized to calculate the stability of the wedges in the abutments. Since the finite element method is time-consuming, the neural network is used as an alt...  相似文献   
884.
Iranian nesting populations of the critically endangered hawksbill turtle(Eretmochelys imbricate) are some of the most important in the Indian Ocean. In this study, four of the most important hawksbill nesting grounds in the Persian Gulf, situated within three Iranian marine protected areas, were surveyed during nesting season,including Nakhiloo, Ommolgorm and Kharko Islands and the mainland beaches of the Naiband Marine-Coastal National Park(NMCNP). We present GIS maps of these key nesting grounds and describe sand texture of key nesting zones, along with conservation recommendations. About 9.2(28.3%) out of 32.5 km of all shores surveyed in this study were used by nesting hawksbill turtles follows: Nakhiloo: 1.4 km(52% of potential nesting area);Ommolgorm: 1.94 km(40%); Kharko: 3.4 km(28%), and NMCNP: 2.46 km(18.9%). The average nesting density was calculated as 131 nests/km at Nakhiloo, 76 nests/km at Ommolgorm, 7 nests/km at Kharko, and 15 nests per km at NMCNP. Highest nesting density was observed in Nakhiloo and Ommolgorm. It is thought that high hawksbill nesting density in these islands seems likely a result of limiting adequate nesting shores rather than the size of population, and also low density in Kharko and NMCNP more related to past and current pressures and low population density. With the exception of Ommolgorm Island, sands at the nesting grounds were well sorted.Grain size indicated that female hawksbill turtles in the Iranian Persian Gulf nest in sands that are generally mixed, with mean grain size ranging from coarse sands(0.4Φ;~0.5–1 mm) to fine sands(2Φ;~0.25 mm). We provide and discuss conservation recommendations and suggestions for future.  相似文献   
885.

Delineation of facies in the subsurface and quantification of uncertainty in their boundaries are significant steps in mineral resource evaluation and reservoir modeling, which impact downstream analyses of a mining or petroleum project. This paper investigates the ability of nonparametric geostatistical simulation algorithms (sequential indicator, single normal equation and filter-based simulation) to construct realizations that reproduce some expected statistical and spatial features, namely facies proportions, boundary regularity, contact relationships and spatial correlation structure, as well as the expected fluctuations of these features across the realizations. The investigation is held through a synthetic case study and a real case study, in which a pluri-Gaussian model is considered as the reference for comparing the simulation results. Sequential indicator simulation and single normal equation simulation based on over-restricted neighborhood implementations yield the poorest results, followed by filter-based simulation, whereas single normal equation simulation with a large neighborhood implementation provides results that are closest to the reference pluri-Gaussian model. However, some biases and inaccurate fluctuations in the realization statistics (facies proportions, indicator direct and cross-variograms) still arise, which can be explained by the use of a single finite-size training image to construct the realizations.

  相似文献   
886.
This study was conducted to evaluate the weathering intensity of the major soils developed on igneous rocks in semiarid region of northwestern Iran.Eight parent materials were selected including monzodiorite,alkali granite,granodiorite,syenite,pyroxene diorite,hornblende andesite,pyroxene andesite,and dacite.Representative soil profiles were described and soil samples were collected and analyzed for selected chemical and physical properties and total concentrations of major elements and Zr,V,Ti and Y.Bulk densities as well as Ti,Zr and V concentrations were used to estimate the strain factors and mass balance equations were used to quantify the net result of pedogenic weathering,i.e.elemental loss and gain.The results of clay content and pedogenic iron variability as well as index of compositional variability(ICV),chemical index of alteration(CIA) and,A-CN-K and MFW ternary plots showed that the soils developed on volcanic rocks(hornblende andesite> pyroxene andesite> dacite) were more weathered than those on the plutonic parent rocks(alkali granite,granodiorite,monzodiorite,syenite,pyroxene diorite).The results of mass balance calculations based on the strain factors revealed that the Ca and Na depleted during weathering progress mostly from plagioclase grains.In the semiarid regions Ca is precipitated as pedogenic calcite in the soil horizons.K and Mg depletion is less than Ca and Na especially in the profiles on the hornblende andesite with the highest clay and LOI content.The results of this study clearly suggest that the behavior of K and Mg during the weathering cannot only be explained by the disintegration of the primary minerals,since they are fixed on the secondary clay minerals.Iron did not change in the soils compared to the parent material and was precipitated as the pedogenic iron and conserved in the soil horizons.Overall,the results on the weathering indicators and major elements mass balance enrichment/depletion in the study area confirmed that the soil profiles developed on volcanic rocks are more weathered than those on the plutonic igneous rocks.  相似文献   
887.
The mixtures of dried sewage sludge (DSS) and sewage sludge ash were studied for removal of acid red 119 (AR119) dye as a new, more environmental friendly, and low cost adsorbent. For this purpose, response surface methodology was applied to optimize the dye removal efficiency and turbidity of treated dye solutions as two individual responses. Results revealed that an optimum condition under specified constraints (dye removal efficiency >95% and turbidity <50 NTU) was obtained at a contact time of 60 min, 40 wt% DSS in the mixture, an initial pH of 6, and an initial dye concentration of 200 mg dye/L in distilled water. Under the optimal condition, dye removal efficiency of 94.98% and effluent turbidity of 24.9 NTU was observed. In further studies, at optimum condition, the effect of some additives on adsorption process and desorption/reusability of adsorbent was investigated. It was observed that removal efficiency was significantly decreased to 83.76% when a simulated dye wastewater (containing the selected dye, acetic acid, and Glauber's salt dissolved in tap water) was used. Desorption studies revealed that AR119 dye could be well removed from dye‐loaded adsorbent by 0.3 M NaOH solution.  相似文献   
888.
A stable extractor of metal ions was synthesized through azo linking of o‐hydroxybenzamide (HBAM) with Amberlite XAD‐4 (AXAD‐4) and was characterized by elemental analyses, IR spectral, and thermal studies. Its water regain value and hydrogen ion capacity were found to be 12.93 and 7.68 mmol g?1, respectively. The optimum pH range (with the half‐loading time [min], t1/2) for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) ions were 2.0–4.0 (5.5), 2.0–4.0 (7.0), 2.0–4.0 (8.0), 4.0–6.0 (9.0), 4.0–6.0 (12.0), and 2.0–4.0 (15.0), respectively. Comparison of breakthrough and overall capacities of the metals ascertains the high degree of column utilization (>70%). The overall sorption capacities for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) ions were found to be 0.29, 0.22, 0.20, 0.16, 0.13, and 0.11 mmol g?1 with the corresponding preconcentration factor of 400, 380, 380, 360, 320, and 320, respectively. The limit of preconcentration was in the range of 5.0–6.3 ng mL?1. The detection limit for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) were found to be 0.39, 0.49, 0.42, 0.59, 0.71, and 1.10 ng mL?1, respectively. The AXAD‐4‐HBAM has been successfully applied for the analysis of natural water, multivitamin formulation, infant milk substitute, hydrogenated oil, urine, and fish.  相似文献   
889.
Mohammad Safeeq  Ali Fares 《水文研究》2012,26(18):2745-2764
The impact of potential future climate change scenarios on streamflow and evapotranspiration (ET) in a mountainous Hawaii watershed was studied using the distributed hydrology soil vegetation model (DHSVM). The hydrologic response of the watershed was simulated for 43 years for different levels of atmospheric CO2 (330, 550, 710 and 970 ppm), temperature (+1.1 and + 6.4 °C) and precipitation (±5%, ±10% and ±20%) on the basis of the Intergovernmental Panel on Climate Change (IPCC) AR4 projections under current, B1, A1B1 and A1F1 emission scenarios. Vegetation leaf conductance and leaf area index were modified to reflect the increase in CO2 concentration. The relative departure of streamflow and ET from their levels during the reference scenarios was calculated on a monthly and annual basis. Results of this study indicate that the streamflow and ET are less sensitive to changes in temperature compared with changes in precipitation. However, temperature increase coupled with precipitation showed significant effect on ET and streamflow. Changes in leaf conductance and leaf area index with increasing CO2 concentration under A1F1 scenario had a significant effect on ET and subsequently on streamflow. Evapotranspiration is less sensitive than streamflow for a similar level of change in precipitation. On the basis of a range of climate change scenarios, DHSVM predicted a change in ET by ±10% and streamflow between ?51% and 90%. From the six ensemble mean scenarios for AR4 A1B, simulations suggest reduction in streamflow by 6.7% to 17.2%. These reductions would produce severe impact on water availability in the region. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
890.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号