首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25228篇
  免费   229篇
  国内免费   952篇
测绘学   1461篇
大气科学   2032篇
地球物理   4785篇
地质学   11983篇
海洋学   1049篇
天文学   1661篇
综合类   2166篇
自然地理   1272篇
  2024年   4篇
  2023年   3篇
  2022年   43篇
  2021年   58篇
  2020年   64篇
  2019年   41篇
  2018年   4798篇
  2017年   4074篇
  2016年   2646篇
  2015年   294篇
  2014年   171篇
  2013年   148篇
  2012年   1044篇
  2011年   2777篇
  2010年   2041篇
  2009年   2338篇
  2008年   1910篇
  2007年   2368篇
  2006年   72篇
  2005年   197篇
  2004年   415篇
  2003年   415篇
  2002年   253篇
  2001年   55篇
  2000年   54篇
  1999年   15篇
  1998年   24篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1981年   21篇
  1980年   19篇
  1979年   1篇
  1977年   1篇
  1976年   7篇
  1973年   1篇
  1972年   2篇
  1971年   4篇
  1969年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
In this paper, we describe the computational framework of a novel method for solving the challenging problem of probabilistic finite elements. The method is called Improved Dynamic Bounds (IDB) and was developed recently to improve the efficiency of the dynamic bounds. The IDB is used in finite element numerical models to calculate time-dependent failure analyses of structures. In applications, the IDB can speed up the overall simulation process by several orders of magnitude. In applications controlled by two influential variables (e.g, two-dimensional problem), the computational efficiency is improved by a factor of 769 according to Rajabalinejad (2009). Applications of IDB indicate the method is most efficient for problems where the number of influential variables are limited. This is often the case for geotechnical and coastal flood defence systems. The IDB method is applied in this paper to the 17th Street Flood Wall, a component of the flood defence system (levee infra-structure) that failed during the Hurricane Katrina, to calculate the failure probability of an I-wall.  相似文献   
92.
Three-dimensional electron density distributions in the solar corona are reconstructed for 100 Carrington rotations (CR 2054?–?2153) during 2007/03?–?2014/08 using the spherically symmetric method from polarized white-light observations with the inner coronagraph (COR1) onboard the twin Solar Terrestrial Relations Observatory (STEREO). These three-dimensional electron density distributions are validated by comparison with similar density models derived using other methods such as tomography and a magnetohydrodynamics (MHD) model as well as using data from the Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO)-C2. Uncertainties in the estimated total mass of the global corona are analyzed based on differences between the density distributions for COR1-A and -B. Long-term variations of coronal activity in terms of the global and hemispheric average electron densities (equivalent to the total coronal mass) reveal a hemispheric asymmetry during the rising phase of Solar Cycle 24, with the northern hemisphere leading the southern hemisphere by a phase shift of 7?–?9 months. Using 14 CR (\(\approx13\)-month) running averages, the amplitudes of the variation in average electron density between Cycle 24 maximum and Cycle 23/24 minimum (called the modulation factors) are found to be in the range of 1.6?–?4.3. These modulation factors are latitudinally dependent, being largest in polar regions and smallest in the equatorial region. These modulation factors also show a hemispheric asymmetry: they are somewhat larger in the southern hemisphere. The wavelet analysis shows that the short-term quasi-periodic oscillations during the rising and maximum phases of Cycle 24 have a dominant period of 7?–?8 months. In addition, it is found that the radial distribution of the mean electron density for streamers at Cycle 24 maximum is only slightly larger (by \(\approx30\%\)) than at cycle minimum.  相似文献   
93.
Rapid population growth, industrialization, and agricultural expansion in the Khoy area (northwestern Iran) have led to its dependence on groundwater and degradation of groundwater quality. This study attempts to decipher the major processes and factors that degrade the groundwater quality of the Khoy plain. For this purpose, 54 groundwater samples from unconfined and confined aquifers of the plain were collected in July 2017 and analyzed for major cations and anions (Na, K, Ca, Mg, HCO3, SO4, and Cl), minor ions (NO3 and F), and Al. Magnesium and bicarbonate were identified as the dominant cation and anion, respectively. Several ionic ratios and geochemical modeling using PHREEQC indicated that the most important hydrogeochemical processes to affect groundwater quality in the plain were weathering and dissolution of evaporitic and silicate minerals, mixing, and ion exchange. There were smaller effects from evaporation and anthropogenic factors (e.g., industries). Results showed that the high salinity of the groundwater in the northeast area of the plain was due to the high solubility of the evaporitic minerals, e.g., halite and gypsum. Reverse ion exchange and the contribution of mineral dissolution were more significant than ion exchange in the northeastern part of the plain. Elevated salinity of the groundwater in the southeast was attributed mostly to reverse ion exchange and somewhat to evaporation.  相似文献   
94.
Shahfahad  Mourya  Mukesh  Kumari  Babita  Tayyab  Mohammad  Paarcha  Aruna  Asif  Rahman  Atiqur 《GeoJournal》2021,86(4):1607-1623
GeoJournal - The population growth in urban areas leads to the expansion of built-up area which leads to a number of serious problems like environmental pollution, destruction of urban ecology,...  相似文献   
95.
The Danish island of Bornholm is located at the southwestern margin of the Fennoscandian Shield, and features exposed Precambrian basement in its northern and central parts. In this paper, we present new U–Pb zircon and titanite ages for granites and orthogneisses from 13 different localities on Bornholm. The crystallization ages of the protolith rocks all fall within the range 1,475–1,445 Ma (weighted average 207Pb/206Pb ages of zircon). Minor age differences, however, may imply a multi-phase emplacement history of the granitoid complex. The presence of occasional inherited zircons (with ages of 1,700–1,800 Ma) indicates that the Bornholm granitoids were influenced by older crustal material. The east–west fabric observed in most of the studied granites and gneisses, presumably originated by deformation in close connection with the magmatism at 1,470–1,450 Ma. Most titanite U–Pb ages fall between 1,450 and 1,430 Ma, reflecting post-magmatic or post-metamorphic cooling. Granitoid magmatism at ca. 1.45 Ga along the southwestern margin of the East European Craton has previously been reported from southern Sweden and Lithuania. The ages obtained in this study indicate that the Bornholm magmatism also was part of this Mesoproterozoic event.  相似文献   
96.
Indus is one of the major sources of sediments to the Gulf of Kachchh. Yet only its <63 micron fraction is studied in detail with regards to the offshore current dynamics. Hence here we present our study on characteristic signature of the Indus sediment load (i.e. mica minerals) in >63 micron size fraction along the coast of Gulf of Kachchh. The spatial distribution of mica minerals along the Gulf of Kachchh coast was studied which showed in general decreasing trend as we move along the northern and southern coast of the Gulf of Kachchh but, an increase in amount near the southern mouth at Okha. The study shows that the earlier proposed tidal barrier is ineffective in restricting movement of mica across the mouth of the gulf due to its characteristic transport mechanism. Also the presence of mudflats along the gulf of Kachchh coast plays a vital role as sediment receptors in the active sediment transport processes and mica minerals prove to be a promising simple tracer in studying the Indus born sediments in the region.  相似文献   
97.
The turbulent characteristics of the neutral boundary layer developing over rough surfaces are not well predicted with operational weather-forecasting models. The problem is attributed to inadequate mixing-length models, to the anisotropy of the flow and to a lack of controlled experimental data against which to validate numerical studies. Therefore, in order to address directly the modelling difficulties for the development of a neutral boundary layer over rough surfaces, and to investigate the turbulent momentum transfer of such a layer, a set of hydraulic flume experiments were carried out. In the experiments, the mean and turbulent quantities were measured by a particle image velocimetry (PIV) technique. The measured velocity variances and fluxes \({(\overline{{u_{i}^{\prime}}{u_{j}^{\prime}}})}\) in longitudinal vertical planes allowed the vertical and longitudinal gradients (?/?z and ?/?x) of the mean and turbulent quantities (fluxes, variances and third-order moments) to be evaluated and the terms of the evolution equations for ?e/?t, \({\partial \overline{u^{\prime 2}}/\partial t}\), \({\partial \overline{w^{\prime 2}}/\partial t}\) and \({\partial \overline{{u^{\prime}}{w^{\prime}}}/\partial t}\) to be quantified, where e is the turbulent kinetic energy. The results show that the pressure-correlation terms allow the turbulent energy to be transferred equitably from \({\overline{{u^{\prime}}^{2}}}\) to \({\overline{{w^{\prime}}^{2}}}\). It appears that the repartition between the constitutive terms of the budget of e, \({\overline{{u^{\prime}}^{2}}}\), \({\overline{{w^{\prime}}^{2}}}\) and \({\overline{{u^{\prime}}{w^{\prime}}}}\) is not significantly affected by the development of the rough neutral boundary layer. For the whole evolution, the transfers of energy are governed by the same terms that are also very similar to the smooth-wall case. The PIV measurements also allowed the spatial integral scales to be computed directly and to be compared with the dissipative and mixing length scales, which were also computed from the data.  相似文献   
98.
2.5-D modeling and inversion techniques are much closer to reality than the simple and traditional 2-D seismic wave modeling and inversion. The sensitivity kernels required in full waveform seismic tomographic inversion are the Fréchet derivatives of the displacement vector with respect to the independent anisotropic model parameters of the subsurface. They give the sensitivity of the seismograms to changes in the model parameters. This paper applies two methods, called ‘the perturbation method’ and ‘the matrix method’, to derive the sensitivity kernels for 2.5-D seismic waveform inversion. We show that the two methods yield the same explicit expressions for the Fréchet derivatives using a constant-block model parameterization, and are available for both the line-source (2-D) and the point-source (2.5-D) cases. The method involves two Green’s function vectors and their gradients, as well as the derivatives of the elastic modulus tensor with respect to the independent model parameters. The two Green’s function vectors are the responses of the displacement vector to the two directed unit vectors located at the source and geophone positions, respectively; they can be generally obtained by numerical methods. The gradients of the Green’s function vectors may be approximated in the same manner as the differential computations in the forward modeling. The derivatives of the elastic modulus tensor with respect to the independent model parameters can be obtained analytically, dependent on the class of medium anisotropy. Explicit expressions are given for two special cases—isotropic and tilted transversely isotropic (TTI) media. Numerical examples are given for the latter case, which involves five independent elastic moduli (or Thomsen parameters) plus one angle defining the symmetry axis.  相似文献   
99.
A method is proposed that uses analysis of borehole stratigraphic logs for the characterization of shallow aquifers and for the assessment of areas suitable for manual drilling. The model is based on available borehole-log parameters: depth to hard rock, depth to water, thickness of laterite and hydraulic transmissivity of the shallow aquifer. The model is applied to a study area in northwestern Senegal. A dataset of boreholes logs has been processed using a software package (TANGAFRIC) developed during the research. After a manual procedure to assign a standard category describing the lithological characteristics, the next step is the automated extraction of different textural parameters and the estimation of hydraulic conductivity using reference values available in the literature. The hydraulic conductivity values estimated from stratigraphic data have been partially validated, by comparing them with measured values from a series of pumping tests carried out in large-diameter wells. The results show that this method is able to produce a reliable interpretation of the shallow hydrogeological context using information generally available in the region. The research contributes to improving the identification of areas where conditions are suitable for manual drilling. This is achieved by applying the described method, based on a structured and semi-quantitative approach, to classify the zones of suitability for given manual drilling techniques using data available in most African countries. Ultimately, this work will support proposed international programs aimed at promoting low-cost water supply in Africa and enhancing access to safe drinking water for the population.  相似文献   
100.
The time varying conditions in the near-Earth space environment that may affect space-borne or ground-based technological systems and may endanger human health or life are referred to as space weather. Space weather effects arise from the dynamic and highly variable conditions in the geospace environment starting from explosive events on the Sun (solar flares), Coronal Mass Ejections near the Sun in the interplanetary medium, and various energetic effects in the magnetosphere–ionosphere–atmosphere system. As the utilization of space has become part of our everyday lives, and as our lives have become increasingly dependent on technological systems vulnerable to the space weather influences, the understanding and prediction of hazards posed by these active solar events have grown in importance. In this paper, we review the processes of the Sun–Earth interactions, the dynamic conditions within the magnetosphere, and the predictability of space weather effects on radio waves, satellites and ground-based technological systems today.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号